The reducible complexity of a mitochondrial molecular machine

被引:47
作者
Clements, Abigail [1 ]
Bursac, Dejan [1 ,5 ]
Gatsos, Xenia [5 ]
Perry, Andrew J. [1 ]
Civciristov, Srgjan [1 ,5 ]
Celik, Nermin [1 ]
Likic, Vladimir A. [4 ]
Poggio, Sebastian [2 ]
Jacobs-Wagner, Christine [2 ,3 ]
Strugnell, Richard A. [6 ]
Lithgow, Trevor [1 ]
机构
[1] Monash Univ, Dept Biochem & Mol Biol, Clayton, Vic 3800, Australia
[2] Yale Univ, Dept Mol Cellular & Dev Biol, New Haven, CT 06520 USA
[3] Howard Hughes Med Inst, New Haven, CT 06520 USA
[4] Univ Melbourne, Mol Sci & Biotechnol Inst Bio21, Parkville, Vic 3010, Australia
[5] Univ Melbourne, Dept Biochem & Mol Biol, Parkville, Vic 3010, Australia
[6] Univ Melbourne, Dept Microbiol & Immunol, Parkville, Vic 3010, Australia
关键词
irreducible complexity; protein evolution; protein import; Caulobacter crescentus; TIM23; complex; 3-DIMENSIONAL STRUCTURES; PROTEIN TRANSLOCATION; INNER MEMBRANE; IMPORT; EVOLUTION; ORIGIN; FTSH; RECOGNITION; SECRETION; PATHWAYS;
D O I
10.1073/pnas.0908264106
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Molecular machines drive essential biological processes, with the component parts of these machines each contributing a partial function or structural element. Mitochondria are organelles of eukaryotic cells, and depend for their biogenesis on a set of molecular machines for protein transport. How these molecular machines evolved is a fundamental question. Mitochondria were derived from an alpha-proteobacterial endosymbiont, and we identified in alpha-proteobacteria the component parts of a mitochondrial protein transport machine. In bacteria, the components are found in the inner membrane, topologically equivalent to the mitochondrial proteins. Although the bacterial proteins function in simple assemblies, relatively little mutation would be required to convert them to function as a protein transport machine. This analysis of protein transport provides a blueprint for the evolution of cellular machinery in general.
引用
收藏
页码:15791 / 15795
页数:5
相关论文
共 43 条
[1]   Multiple pathways for sorting mitochondrial precursor proteins [J].
Bolender, Natalia ;
Sickmann, Albert ;
Wagner, Richard ;
Meisinger, Chris ;
Pfanner, Nikolaus .
EMBO REPORTS, 2008, 9 (01) :42-49
[2]   RNA polymerase: the vehicle of transcription [J].
Borukhov, Sergei ;
Nudler, Evgeny .
TRENDS IN MICROBIOLOGY, 2008, 16 (03) :126-134
[3]   A METHOD TO IDENTIFY PROTEIN SEQUENCES THAT FOLD INTO A KNOWN 3-DIMENSIONAL STRUCTURE [J].
BOWIE, JU ;
LUTHY, R ;
EISENBERG, D .
SCIENCE, 1991, 253 (5016) :164-170
[4]   Microsporidian mitosomes retain elements of the general mitochondrial targeting system [J].
Burri, Lena ;
Williams, Bryony A. P. ;
Bursac, Dejan ;
Lithgow, Trevor ;
Keeling, Patrick J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (43) :15916-15920
[5]   Structural biology of cellular machines [J].
Chiu, W ;
Baker, ML ;
Almo, SC .
TRENDS IN CELL BIOLOGY, 2006, 16 (03) :144-150
[6]   Parvularcula bermudensis gen. nov., sp nov., a marine bacterium that forms a deep branch in the α-Proteobacteria [J].
Cho, JC ;
Giovannoni, SJ .
INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 2003, 53 :1031-1036
[7]  
Darwin C., 1964, On the origin of species
[8]   Mutation of DNAJC19, a human homologue of yeast inner mitochondrial membrane co-chaperones, causes DCMA syndrome, a novel autosomal recessive Barth syndrome-like condition [J].
Davey, KM ;
Parboosingh, JS ;
McLeod, DR ;
Chan, A ;
Casey, R ;
Ferreira, P ;
Snyder, FF ;
Bridge, PJ ;
Bernier, FP .
JOURNAL OF MEDICAL GENETICS, 2006, 43 (05) :385-393
[9]   Evolution of the molecular machines for protein import into mitochondria [J].
Dolezal, Pavel ;
Likic, Vladimir ;
Tachezy, Jan ;
Lithgow, Trevor .
SCIENCE, 2006, 313 (5785) :314-318
[10]   Mitochondrial connection to the origin of the eukaryotic cell [J].
Emelyanov, VV .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2003, 270 (08) :1599-1618