Large-scale electrophysiology: Acquisition, compression, encryption, and storage of big data

被引:91
作者
Brinkmann, Benjamin H. [2 ]
Bower, Mark R. [1 ,2 ]
Stengel, Keith A. [3 ]
Worrell, Gregory A. [1 ,2 ]
Stead, Matt [1 ,2 ]
机构
[1] Mayo Clin & Mayo Fdn, Dept Neurol, Rochester, MN 55905 USA
[2] Mayo Syst Electrophysiol Lab, Rochester, MN USA
[3] Neuralynx Inc, Bozeman, MT USA
基金
美国国家卫生研究院;
关键词
Quantitative analysis; EEG analysis; Data compression; Range encoding; Data encryption; Cyclic redundancy codes; Multiscale electrophysiology format; HIGH-FREQUENCY OSCILLATIONS; INTRACRANIAL ELECTROENCEPHALOGRAPHY; TEMPORAL-LOBE; EEG; FORMAT; GENERATION; ELECTRODES; EXCHANGE;
D O I
10.1016/j.jneumeth.2009.03.022
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The use of large-scale electrophysiology to obtain high spatiotemporal resolution brain recordings (>100 channels) capable of probing the range of neural activity from local field potential oscillations to single-neuron action potentials presents new challenges for data acquisition, storage, and analysis. Our group is currently performing continuous, long-term electrophysiological recordings in human subjects undergoing evaluation for epilepsy surgery using hybrid intracranial electrodes composed of up to 320 micro- and clinical macroelectrode arrays. DC-capable amplifiers, sampling at 32 kHz per channel with 18-bits of A/D resolution are capable of resolving extracellular voltages spanning single-neuron action potentials, high frequency oscillations, and high amplitude ultra-slow activity, but this approach generates 3 terabytes of data per day (at 4 bytes per sample) using current data formats. Data compression can provide several practical benefits, but only if data can be compressed and appended to files in real-time in a format that allows random access to data segments of varying size. Here we describe a state-of-the-art, scalable, electrophysiology platform designed for acquisition, compression, encryption, and storage of large-scale data. Data are stored in a file format that incorporates lossless data compression using range-encoded differences, a 32-bit cyclically redundant checksum to ensure data integrity, and 128-bit encryption for protection of patient information. (C) 2009 Elsevier B.V. All rights reserved,
引用
收藏
页码:185 / 192
页数:8
相关论文
共 25 条
[1]  
[Anonymous], 2003, FED REG
[2]   EEG data compression techniques [J].
Antoniol, G ;
Tonella, P .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1997, 44 (02) :105-114
[3]  
BODDEN E, 2002, PROS DAT 2001 U TECH
[4]   Changes in granule cell firing rates precede locally recorded spontaneous seizures by minutes in an animal model of temporal lobe epilepsy [J].
Bower, Mark R. ;
Buckmaster, Paul S. .
JOURNAL OF NEUROPHYSIOLOGY, 2008, 99 (05) :2431-2442
[5]   Local generation of fast ripples in epileptic brain [J].
Bragin, A ;
Mody, I ;
Wilson, CL ;
Engel, J .
JOURNAL OF NEUROSCIENCE, 2002, 22 (05) :2012-2021
[6]   Large-scale recording of neuronal ensembles [J].
Buzsáki, G .
NATURE NEUROSCIENCE, 2004, 7 (05) :446-451
[7]   Time-frequency spectral estimation of multichannel EEG using the auto-SLEX method [J].
Cranstoun, SD ;
Ombao, HC ;
von Sachs, R ;
Guo, WS ;
Litt, B .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2002, 49 (09) :988-996
[8]   Human and automated detection of high-frequency oscillations in clinical intracranial EEG recordings [J].
Gardner, Andrew B. ;
Worrell, Greg A. ;
Marsh, Eric ;
Dlugos, Dennis ;
Litt, Brian .
CLINICAL NEUROPHYSIOLOGY, 2007, 118 (05) :1134-1143
[9]   Internally generated reactivation of single neurons in human hippocampus during free recall [J].
Gelbard-Sagiv, Hagar ;
Mukamel, Roy ;
Harel, Michal ;
Malach, Rafael ;
Fried, Itzhak .
SCIENCE, 2008, 322 (5898) :96-101
[10]   Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements [J].
Harris, KD ;
Henze, DA ;
Csicsvari, J ;
Hirase, H ;
Buzsáki, G .
JOURNAL OF NEUROPHYSIOLOGY, 2000, 84 (01) :401-414