MAPKs mediate S phase arrest induced by vanadate through a p53-dependent pathway in mouse epidermal C141 cells

被引:19
作者
Zhang, Z
He, HJ
Chen, F
Huang, CS
Shi, XL
机构
[1] NIOSH, Pathol & Physiol Res Branch, Hlth Effects Lab Div, Morgantown, WV 26505 USA
[2] W Virginia Univ, Dept Basic Pharmaceut Sci, Morgantown, WV 26506 USA
[3] NYU, Sch Med, Nelson Inst Environm Med, New York, NY 10016 USA
关键词
D O I
10.1021/tx0255018
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Mitogen-activated protein (MAP) kinases play an important role in mediation of the signal transduction pathway in cellular response to genotoxic stress. Cell growth arrest is considered as an early stage in response to the genotoxic stress. p53 is well-known as a tumor suppression gene involved in both cell growth arrest and apoptosis. The present study investigated the involvement of MA-P kinases in vanadate-induced cell growth arrest and the relationship of p53. DNA content analysis showed that vanadate-induced S phase arrest is time- and dose-dependent in p53 wild-type C141 cells but not in p53-deficient C141 cells. Western blotting results indicated that vanadate caused an inactivation of p-cdk2 at Thr160, which is an important kinase for the progression of S phase, and an increase in expression of p21, which is a key for S phase arrest. In p53-deficient cells, vanadate did not induce any observable change in p21 or p-cdk2 level. In addition, vanadate up-regulated phospho-p38 and ERK, two members of MAP kinases. At the same time, vanadate increased the p53 activity as measured by luciferase assay. Addition of PD98059 and SB202190, inhibitors of ERK and p38, respectively, decreased vanadate-induced S phase arrest, reduced p21 levels, restored activation of p-cdk2, and decreased p53 activity. The study demonstrated that vanadate-induced S phase arrest is mediated by both ERK and p38 in a p53-dependent pathway.
引用
收藏
页码:950 / 956
页数:7
相关论文
共 60 条
[1]   The role of MAP kinase in TPA-mediated cell cycle arrest of human breast cancer cells [J].
Alblas, J ;
Slager-Davidov, R ;
Steenbergh, PH ;
Sussenbach, JS ;
van der Burg, B .
ONCOGENE, 1998, 16 (01) :131-139
[2]   DNA-DAMAGE AND THE DNA-ACTIVATED PROTEIN-KINASE [J].
ANDERSON, CW .
TRENDS IN BIOCHEMICAL SCIENCES, 1993, 18 (11) :433-437
[3]   BOTH P16 AND P21 FAMILIES OF CYCLIN-DEPENDENT KINASE (CDK) INHIBITORS BLOCK THE PHOSPHORYLATION OF CYCLIN-DEPENDENT KINASES BY THE CDK-ACTIVATING KINASE [J].
APRELIKOVA, O ;
XIONG, Y ;
LIU, ET .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (31) :18195-18197
[4]  
BAGRODIA S, 1995, J BIOL CHEM, V270, P27995
[5]   Activation of the p42 mitogen-activated protein kinase pathway inhibits Cdc2 activation and entry into M-phase in cycling Xenopus egg extracts [J].
Bitangcol, JC ;
Chau, ASS ;
Stadnick, E ;
Lohka, MJ ;
Dicken, B ;
Shibuya, EK .
MOLECULAR BIOLOGY OF THE CELL, 1998, 9 (02) :451-467
[6]   SIGNAL-TRANSDUCTION VIA THE MAP KINASES - PROCEED AT YOUR OWN RSK [J].
BLENIS, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (13) :5889-5892
[7]   Initiation of a G2/M checkpoint after ultraviolet radiation requires p38 kinase [J].
Bulavin, DV ;
Higashimoto, Y ;
Popoff, IJ ;
Gaarde, WA ;
Basrur, V ;
Potapova, O ;
Appella, E ;
Fornace, AJ .
NATURE, 2001, 411 (6833) :102-107
[8]   PARALLEL SIGNAL-PROCESSING AMONG MAMMALIAN MAPKS [J].
CANO, E ;
MAHADEVAN, LC .
TRENDS IN BIOCHEMICAL SCIENCES, 1995, 20 (03) :117-122
[9]   VANADATE, EPIDERMAL GROWTH-FACTOR AND THE STIMULATION OF DNA-SYNTHESIS [J].
CARPENTER, G .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1981, 102 (04) :1115-1121
[10]  
Chan TA, 2000, GENE DEV, V14, P1584