Computational estimation and experimental verification of off-target silencing during posttranscriptional gene silencing in plants

被引:159
作者
Xu, Ping [1 ]
Zhang, Yuanji [1 ]
Kang, Li [1 ]
Roossinck, Marilyn J. [1 ]
Mysore, Kirankumar S. [1 ]
机构
[1] Samuel Roberts Noble Fdn Inc, Div Plant Biol, Ardmore, OK 73401 USA
关键词
D O I
10.1104/pp.106.083295
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Successful application of posttranscriptional gene silencing (PTGS) for gene function study in both plants and animals depends on high target specificity and silencing efficiency. By computational analysis with genome and/or transcriptome sequences of 25 plant species, we predicted that about 50% to 70% of gene transcripts in plants have potential off-targets when used for PTGS that could obscure experimental results. We have developed a publicly available Web-based computational tool called siRNA Scan to identify potential off-targets during PTGS. Some of the potential off-targets obtained from this tool were tested by measuring the amount of off- target transcripts using quantitative reverse transcription-PCR. Up to 50% of the predicted off-target genes tested in plants were actually silenced when tested experimentally. Our results suggest that a high risk of off-target gene silencing exists during PTGS in plants. Our siRNA Scan tool is useful to design better constructs for PTGS by minimizing off- target gene silencing in both plants and animals.
引用
收藏
页码:429 / 440
页数:12
相关论文
共 54 条
[1]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[2]   Algorithm for selection of functional siRNA sequences [J].
Amarzguioui, M ;
Prydz, H .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2004, 316 (04) :1050-1058
[3]   Tolerance for mutations and chemical modifications in a siRNA [J].
Amarzguioui, M ;
Holen, T ;
Babaie, E ;
Prydz, H .
NUCLEIC ACIDS RESEARCH, 2003, 31 (02) :589-595
[4]   RNA silencing in plants [J].
Baulcombe, D .
NATURE, 2004, 431 (7006) :356-363
[5]   Fast forward genetics based on virus-induced gene silencing [J].
Baulcombe, DC .
CURRENT OPINION IN PLANT BIOLOGY, 1999, 2 (02) :109-113
[6]   3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets [J].
Birmingham, A ;
Anderson, EM ;
Reynolds, A ;
Ilsley-Tyree, D ;
Leake, D ;
Fedorov, Y ;
Baskerville, S ;
Maksimova, E ;
Robinson, K ;
Karpilow, J ;
Marshall, WS ;
Khvorova, A .
NATURE METHODS, 2006, 3 (03) :199-204
[7]   Induction of an interferon response by RNAi vectors in mammalian cells [J].
Bridge, AJ ;
Pebernard, S ;
Ducraux, A ;
Nicoulaz, AL ;
Iggo, R .
NATURE GENETICS, 2003, 34 (03) :263-264
[8]   Target accessibility dictates the potency of human RISC [J].
Brown, KM ;
Chu, CY ;
Rana, TM .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2005, 12 (05) :469-470
[9]   Applications and advantages of virus-induced gene silencing for gene function studies in plants [J].
Burch-Smith, TM ;
Anderson, JC ;
Martin, GB ;
Dinesh-Kumar, SP .
PLANT JOURNAL, 2004, 39 (05) :734-746
[10]   Genomewide view of gene silencing by small interfering RNAs [J].
Chi, JT ;
Chang, HY ;
Wang, NN ;
Chang, DS ;
Dunphy, N ;
Brown, PO .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (11) :6343-6346