Finite-temperature perturbation theory for quasi-one-dimensional spin-=1/2 Heisenberg antiferromagnets

被引:26
作者
Bocquet, M [1 ]
机构
[1] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England
关键词
D O I
10.1103/PhysRevB.65.184415
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We develop a finite-temperature perturbation theory for quasi-one-dimensional quantum spin systems, in the manner suggested by Schulz in Phys. Rev. Lett. 77, 2790 (1996) and use this formalism to study their dynamical response. The corrections to the random-phase approximation formula for the dynamical magnetic susceptibility obtained with this method involve multipoint correlation functions of the one-dimensional theory on which the random-phase approximation expansion is built. This "anisotropic" perturbation theory takes the form of a systematic high-temperature expansion. This formalism is first applied to the estimation of the Neel temperature of S=1/2 anisotropic cubic lattice Heisenberg antiferromagnets. It is then applied to the compound Cs2CuCl4, a frustrated S=1/2 antiferromagnet with a Dzyaloshinskii-Moriya spin anisotropy. Using the next leading order to the random-phase approximation, we determine the improved values for the critical temperature and incommensurability. Despite the nonuniversal character of these quantities, the calculated values compare remarkably well with the experimental values for both compounds.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 34 条
[1]   Exact correlation amplitude for the S=1/2 Heisenberg antiferromagnetic chain [J].
Affleck, I .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (20) :4573-4581
[2]   Crossover to Fermi-liquid behavior for weakly coupled Luttinger liquids in the anisotropic large-dimension limit [J].
Arrigoni, E .
PHYSICAL REVIEW B, 2000, 61 (12) :7909-7929
[3]   Temperature-dependent logarithmic corrections in the spin-1/2 Heisenberg chain [J].
Barzykin, V .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2000, 12 (09) :2053-2059
[4]   NMR relaxation rates in a spin-1/2 antiferromagnetic chain [J].
Barzykin, V .
PHYSICAL REVIEW B, 2001, 63 (14)
[5]   Metal theory [J].
Bethe, H. .
ZEITSCHRIFT FUR PHYSIK, 1931, 71 (3-4) :205-226
[6]   Finite-temperature dynamical magnetic susceptibility of quasi-one-dimensional frustrated spin-1/2 Heisenberg antiferromagnets [J].
Bocquet, M ;
Essler, FHL ;
Tsvelik, AM ;
Gogolin, AO .
PHYSICAL REVIEW B, 2001, 64 (09)
[7]   ONE-PARTICLE AND 2-PARTICLE INSTABILITY OF COUPLED LUTTINGER LIQUIDS [J].
BOIES, D ;
BOURBONNAIS, C ;
TREMBLAY, AMS .
PHYSICAL REVIEW LETTERS, 1995, 74 (06) :968-971
[8]   Quasi-1D S=1/2 antiferromagnet Cs2CuCl4 in a magnetic field [J].
Coldea, R ;
Tennant, DA ;
Cowley, RA ;
McMorrow, DF ;
Dorner, B ;
Tylczynski, Z .
PHYSICAL REVIEW LETTERS, 1997, 79 (01) :151-154
[9]   The phase diagram of a quasi-1D S=1/2 antiferromagnet [J].
Coldea, R ;
Tennant, DA ;
Cowley, RA ;
McMorrow, DF ;
Dorner, B ;
Tylczynski, Z .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1998, 177 :659-660
[10]   Experimental realization of a 2D fractional quantum spin liquid [J].
Coldea, R ;
Tennant, DA ;
Tsvelik, AM ;
Tylczynski, Z .
PHYSICAL REVIEW LETTERS, 2001, 86 (07) :1335-1338