Role of biokinetics in risk assessment of drugs and chemicals in children

被引:44
作者
de Zwart, LL [1 ]
Haenen, HEMG [1 ]
Versantvoort, CHM [1 ]
Wolterink, G [1 ]
van Engelen, JGM [1 ]
Sips, AJAM [1 ]
机构
[1] Natl Inst Publ Hlth & Environm, Ctr Subst & Integrated Risk Assessment, NL-3720 BA Bilthoven, Netherlands
关键词
pediatric; children; risk assessment; pharmacokinetics; drugs; chemicals; absorption; distribution; metabolism; excretion;
D O I
10.1016/j.yrtph.2004.02.006
中图分类号
DF [法律]; D9 [法律]; R [医药、卫生];
学科分类号
0301 ; 10 ;
摘要
Whether children incur different risks from xenobiotics than adults will depend on the exposure, biokinetics, and dynamics of compound. In this paper, current knowledge on developmental physiology and possible effects on biokinetics are evaluated and the role of biokinetics in risk assessment both for drugs and chemicals is discussed. It is concluded that most dramatic age-related physiological changes that may affect biokinetics occur in the first 6-12 months of age. The difference in internal exposure between children and adults can generally be predicted from already known developmental physiological differences. However, for risk assessment it will also be necessary to determine whether internal exposure is within the drug's therapeutic window or if it will exceed the NOAEL of a chemical. Furthermore, the effects of internal exposure of potentially harmful compounds on developing organ systems is of utmost importance. However, knowledge on this aspect is very limited. Risk assessment in children could be improved by: (1) application of pediatric PBPK-models in order to gain insight into internal exposure in children, (2) studies in juvenile animals for studying effects on developing systems, and (3) extrapolation of knowledge on the relationship between internal exposure and dynamics for drugs to other chemicals. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:282 / 309
页数:28
相关论文
共 164 条
[61]  
HENKE G, 1970, ARCH TOXIKOL, V26, P8
[62]  
HENNING, 1994, PHYSL GASTROINTESTIN, P571
[63]  
HERNGREN L, 1983, DEV PHARMACOL THERAP, V6, P110
[64]  
HEUBI JE, 1982, J LAB CLIN MED, V100, P127
[65]   The ontogeny of human drug-metabolizing enzymes: Phase I oxidative enzymes [J].
Hines, RN ;
McCarver, DG .
JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS, 2002, 300 (02) :355-360
[66]   Skin physiology of the neonate and young infant: A prospective study of functional skin parameters during early infancy [J].
Hoeger, PH ;
Enzmann, CC .
PEDIATRIC DERMATOLOGY, 2002, 19 (03) :256-262
[67]   DEVELOPMENT OF MECHANISMS FOR DRUG EXCRETION [J].
HOOK, JB ;
HEWITT, WR .
AMERICAN JOURNAL OF MEDICINE, 1977, 62 (04) :497-506
[68]   PERINATAL RENAL PHARMACOLOGY [J].
HOOK, JB ;
BAILIE, MD .
ANNUAL REVIEW OF PHARMACOLOGY AND TOXICOLOGY, 1979, 19 :491-509
[69]  
*ICPS, 2001, WHOPCS014 ICPS
[70]  
*ICRP, ICRP PUBL, V23