Continuous exposure to high concentrations of nitric oxide leads to persistent inhibition of oxygen Consumption by J774 cells as well as extraction of oxygen by the extracellular medium

被引:33
作者
Orsi, A [1 ]
Beltran, B [1 ]
Clementi, E [1 ]
Hallén, K [1 ]
Feelisch, M [1 ]
Moncada, S [1 ]
机构
[1] UCL, Wolfson Inst Biomed Res, London WC1E 6BT, England
关键词
cell respiration; complex I; glutathione; nitric oxide; S-nitrosation;
D O I
10.1042/0264-6021:3460407
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Nitric oxide (NO) plays a key role in many physiological and pathophysiological events, including the control of cell respiration. Both reversible and irreversible inhibition of mitochondrial respiration have been reported following the generation of NO by cells. We have exposed the murine macrophage cell line J774 to high concentrations of NO, such as are generated in some pathological conditions, and determined their effect on oxygen consumption. We observed a persistent inhibition of respiration which was due to a redox-dependent, progressive inhibition of complex I activity. No other enzyme of the respiratory chain was inhibited in this way. At the same time, we detected a paradoxical removal of oxygen by the extracellular medium. This removal was due to a chemical interaction between dissolved oxygen and NO-related species released from cells exposed to NO. A similar removal of oxygen by the cell supernatant also occurred following activation of cells with cytokines and bacterial products. Thus, the amounts of NO generated during pathological conditions may contribute to tissue hypoxia both by inhibiting cell respiration and by promoting removal of oxygen from the extracellular medium.
引用
收藏
页码:407 / 412
页数:6
相关论文
共 26 条
[1]   FEEDBACK INHIBITION OF NITRIC-OXIDE SYNTHASE ACTIVITY BY NITRIC-OXIDE [J].
ASSREUY, J ;
CUNHA, FQ ;
LIEW, FY ;
MONCADA, S .
BRITISH JOURNAL OF PHARMACOLOGY, 1993, 108 (03) :833-837
[2]   APPARENT HYDROXYL RADICAL PRODUCTION BY PEROXYNITRITE - IMPLICATIONS FOR ENDOTHELIAL INJURY FROM NITRIC-OXIDE AND SUPEROXIDE [J].
BECKMAN, JS ;
BECKMAN, TW ;
CHEN, J ;
MARSHALL, PA ;
FREEMAN, BA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (04) :1620-1624
[3]  
BOLANOS JP, 1994, J NEUROCHEM, V63, P910
[4]   Nitric oxide acutely inhibits neuronal energy production [J].
Brorson, JR ;
Schumacker, PT ;
Zhang, H .
JOURNAL OF NEUROSCIENCE, 1999, 19 (01) :147-158
[5]   Transcellular regulation of cell respiration by nitric oxide generated by activated macrophages [J].
Brown, GC ;
Foxwell, N ;
Moncada, S .
FEBS LETTERS, 1998, 439 (03) :321-324
[6]   Nitric oxide and mitochondrial respiration [J].
Brown, GC .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 1999, 1411 (2-3) :351-369
[7]   NANOMOLAR CONCENTRATIONS OF NITRIC-OXIDE REVERSIBLY INHIBIT SYNAPTOSOMAL RESPIRATION BY COMPETING WITH OXYGEN AT CYTOCHROME-OXIDASE [J].
BROWN, GC ;
COOPER, CE .
FEBS LETTERS, 1994, 356 (2-3) :295-298
[8]  
BROWN GC, 1995, J NEUROCHEM, V64, P1965
[9]   PRODUCTION OF SUPEROXIDE RADICALS AND HYDROGEN-PEROXIDE BY NADH-UBIQUINONE REDUCTASE AND UBIQUINOL-CYTOCHROME C REDUCTASE FROM BEEF-HEART MITOCHONDRIA [J].
CADENAS, E ;
BOVERIS, A ;
RAGAN, CI ;
STOPPANI, AOM .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1977, 180 (02) :248-257
[10]   REVERSIBLE INHIBITION OF CYTOCHROME-C-OXIDASE, THE TERMINAL ENZYME OF THE MITOCHONDRIAL RESPIRATORY-CHAIN, BY NITRIC-OXIDE - IMPLICATIONS FOR NEURODEGENERATIVE DISEASES [J].
CLEETER, MWJ ;
COOPER, JM ;
DARLEYUSMAR, VM ;
MONCADA, S ;
SCHAPIRA, AHV .
FEBS LETTERS, 1994, 345 (01) :50-54