Chromatin Structure Is Implicated in "Late" Elongation Checkpoints on the U2 snRNA and β-Actin Genes

被引:39
作者
Egloff, Sylvain [1 ]
Al-Rawaf, Hadeel [1 ]
O'Reilly, Dawn [1 ]
Murphy, Shona [1 ]
机构
[1] Univ Oxford, Sir William Dunn Sch Pathol, Oxford OX1 3RE, England
基金
英国医学研究理事会; 英国惠康基金;
关键词
RNA-POLYMERASE-II; SMALL NUCLEAR-RNA; C-TERMINAL DOMAIN; P-TEFB; IN-VIVO; TRANSCRIPT ELONGATION; MULTISUBUNIT COMPLEX; POL-II; GENOME; NELF;
D O I
10.1128/MCB.00189-09
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The negative elongation factor NELF is a key component of an early elongation checkpoint generally located within 100 bp of the transcription start site of protein-coding genes. Negotiation of this checkpoint and conversion to productive elongation require phosphorylation of the carboxy-terminal domain of RNA polymerase II (pol II), NELF, and DRB sensitivity-inducing factor (DSIF) by positive transcription elongation factor b (P-TEFb). P-TEFb is dispensable for transcription of the noncoding U2 snRNA genes, suggesting that a NELF-dependent checkpoint is absent. However, we find that NELF at the end of the 800-bp U2 gene transcription unit and RNA interference-mediated knockdown of NELF causes a termination defect. NELF is also associated 800 bp downstream of the transcription start site of the beta-actin gene, where a "late" P-TEFb-dependent checkpoint occurs. Interestingly, both genes have an extended nucleosome-depleted region up to the NELF-dependent control point. In both cases, transcription through this region is P- TEFb independent, implicating chromatin in the formation of the terminator/checkpoint. Furthermore, CTCF colocalizes with NELF on the U2 and beta-actin genes, raising the possibility that it helps the positioning and/or function of the NELF-dependent control point on these genes.
引用
收藏
页码:4002 / 4013
页数:12
相关论文
共 63 条
[1]   High-resolution profiling of histone methylations in the human genome [J].
Barski, Artern ;
Cuddapah, Suresh ;
Cui, Kairong ;
Roh, Tae-Young ;
Schones, Dustin E. ;
Wang, Zhibin ;
Wei, Gang ;
Chepelev, Iouri ;
Zhao, Keji .
CELL, 2007, 129 (04) :823-837
[2]   FACT facilitates transcription-dependent nucleosome alteration [J].
Belotserkovskaya, R ;
Oh, S ;
Bondarenko, VA ;
Orphanides, G ;
Studitsky, VM ;
Reinberg, D .
SCIENCE, 2003, 301 (5636) :1090-1093
[3]   Genomic maps and comparative analysis of histone modifications in human and mouse [J].
Bernstein, BE ;
Kamal, M ;
Lindblad-Toh, K ;
Bekiranov, S ;
Bailey, DK ;
Huebert, DJ ;
McMahon, S ;
Karlsson, EK ;
Kulbokas, EJ ;
Gingeras, TR ;
Schreiber, SL ;
Lander, ES .
CELL, 2005, 120 (02) :169-181
[4]   RNA polymerase II carboxy-terminal domain phosphorylation is required for cotranscriptional pre-mRNA splicing and 3′-end formation [J].
Bird, G ;
Zorio, DAR ;
Bentley, DL .
MOLECULAR AND CELLULAR BIOLOGY, 2004, 24 (20) :8963-8969
[5]   Nucleosomes can form a polar barrier to transcript elongation by RNA polymerase II [J].
Bondarenko, Vladimir A. ;
Steele, Louise M. ;
Ujvari, Andrea ;
Gaykalova, Daria A. ;
Kulaeva, Olga I. ;
Polikanov, Yury S. ;
Luse, Donal S. ;
Studitsky, Vasily M. .
MOLECULAR CELL, 2006, 24 (03) :469-479
[6]   In vivo footprinting studies suggest a role for chromatin in transcription of the human 7SK gene [J].
Boyd, DC ;
Greger, IH ;
Murphy, S .
GENE, 2000, 247 (1-2) :33-44
[7]   The multi-tasking P-TEFb complex [J].
Bres, Vanessa ;
Yoh, Sunnie M. ;
Jones, Katherine A. .
CURRENT OPINION IN CELL BIOLOGY, 2008, 20 (03) :334-340
[8]   Disruption of downstream chromatin directed by a transcriptional activator [J].
Brown, SA ;
Kingston, RE .
GENES & DEVELOPMENT, 1997, 11 (23) :3116-3121
[9]   Activator-dependent regulation of transcriptional pausing on nucleosomal templates [J].
Brown, SA ;
Imbalzano, AN ;
Kingston, RE .
GENES & DEVELOPMENT, 1996, 10 (12) :1479-1490
[10]   RSC exploits histone acetylation to abrogate the nucleosomal block to RNA polymerase II elongation [J].
Carey, Michael ;
Li, Bing ;
Workman, Jerry L. .
MOLECULAR CELL, 2006, 24 (03) :481-487