Towards a determination of the active surface area of polycrystalline and nanoparticle electrodes by Cu upd and CO oxidation

被引:28
作者
Nagel, T. [1 ]
Bogolowski, N. [1 ]
Baltruschat, H. [1 ]
机构
[1] Univ Bonn, Inst Phys Chem, D-53117 Bonn, Germany
关键词
Cu-UPD; CO-oxidation; DEMS; Pt-single crystal electrodes; Se-deposition; surface area determination; Ru-electrode;
D O I
10.1007/s10800-006-9187-y
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Methods for the determination of the surface area for Pt, Ru and Se modified Pt and Ru are compared, in view of their possible application for technical and nanoparticle electrodes. The hydrogen adsorption charge can hardly be used as a reliable measure for the surface area for Ru because it is paralleled by anion adsorption. The charge necessary for the oxidation of adsorbed CO also contains a large contribution due to anion or oxygen adsorption, which amounts to approx. 45% of the charge in the case of Ru. The mass spectrometrically determined amount of CO2 formed gives a more reliable measure for the surface area, provided that the maximum coverages are constant and independent of the particular surface. Values obtained in this way agree to within 20% with surface area values obtained from measuring the charge needed for the desorption of a complete monolayer of Cu upd on Pt(111) and polycrystalline Pt, polycrystalline Ru, submonolayers of Ru on polycrystalline Pt and on Pt(111) and for nanoparticle, carbon supported electrodes. Se modified Ru has recently found attention as a methanol tolerant cathode material for oxygen reduction. CO does not adsorb on Pt or Ru saturated by Se. For surfaces partially covered by Se, a comparison of the charge measured by cyclic voltammetry in the hydrogen region and of the mass spectrometrically determined amount of CO2 suggests that the latter can be used for a determination of the area not covered by Se. Cu upd, on the other hand, also takes place on surfaces completely covered by Se; the Cu desorption charge is independent of the Se coverage on Pt and Ru modified Pt as long as it does not exceed 70% of full coverage. In the presence of multilayers of Se, Cu (x) Se is formed. On Se modified bulk Ru the amount of Cu upd decreases with increasing Se coverage, approaching only 105 mu C m(-2) for full Se coverage.
引用
收藏
页码:1297 / 1306
页数:10
相关论文
共 38 条
[31]   Copper UPD on selenium-modified polycrystalline Pt electrode [J].
Steponavicius, A ;
Simkunaite, D .
RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2002, 38 (05) :488-495
[32]   Methanol-resistant cathodic oxygen reduction catalysts for methanol fuel cells [J].
Tributsch, H ;
Bron, M ;
Hilgendorff, M ;
Schulenburg, H ;
Dorbandt, I ;
Eyert, V ;
Bogdanoff, P ;
Fiechter, S .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2001, 31 (07) :739-748
[33]   Formation of intermediates during methanol oxidation:: A quantitative DEMS study [J].
Wang, H ;
Löffler, T ;
Baltruschat, H .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2001, 31 (07) :759-765
[34]   ANALYSIS OF ADSORBED INTERMEDIATES AND DETERMINATION OF SURFACE-POTENTIAL SHIFTS BY DEMS [J].
WILLSAU, J ;
HEITBAUM, J .
ELECTROCHIMICA ACTA, 1986, 31 (08) :943-948
[35]   THE ADSORPTION OF CO ON A POROUS PT-ELECTRODE IN SULFURIC-ACID STUDIED BY DEMS [J].
WOLTER, O ;
HEITBAUM, J .
BERICHTE DER BUNSEN-GESELLSCHAFT-PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 1984, 88 (01) :6-10
[36]   Synthesis and structural characterization of Se-modified carbon-supported ru nanoparticles for the oxygen reduction reaction [J].
Zaikovskii, VI ;
Nagabhushana, KS ;
Kriventsov, VV ;
Loponov, KN ;
Cherepanova, SV ;
Kvon, RI ;
Bönnemann, H ;
Kochubey, DI ;
Savinova, ER .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (13) :6881-6890
[37]  
[No title captured]
[38]  
[No title captured]