Pollen dispersal in sugar beet production fields

被引:22
作者
Darmency, Henri [1 ]
Klein, Etienne K. [2 ]
De Garanbe, Thierry Gestat [3 ]
Gouyon, Pierre-Henri [4 ]
Richard-Molard, Marc [3 ]
Muchembled, Claude [3 ]
机构
[1] INRA, UMR Biol & Gest Adventices 1210, F-21065 Dijon, France
[2] INRA, UR Biostat & Proc Spatiaux 546, F-84914 Avignon, France
[3] Inst Tech Betterave, F-75008 Paris, France
[4] Museum Hist Nat, F-75005 Paris, France
关键词
MEDIATED GENE FLOW; WILD RELATIVES; OILSEED RAPE; WEED BEET; SEED CROPS; POPULATIONS; VULGARIS; SCALE; POLLINATION; RELEASE;
D O I
10.1007/s00122-009-0964-y
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Pollen-mediated gene flow has important implications for biodiversity conservation and for breeders and farmers' activities. In sugar beet production fields, a few sugar beet bolters can produce pollen as well as be fertilized by wild and weed beet. Since the crop, the wild beets, and the weed beets are the same species and intercross freely, the question of pollen flow is an important issue to determine the potential dispersal of transgenes from field to field and to wild habitats. We report here an experiment to describe pollen dispersal from a small herbicide-resistant sugar beet source towards male sterile target plants located along radiating lines up to 1,200 m away. Individual dispersal functions were inferred from statistical analyses and compared. Pollen limitation, as expected in root-production fields, was confirmed at all the distances from the pollen source. The number of resistant seeds produced by bait plants best fitted a fat-tailed probability distribution curve of pollen grains (power-law) dependent on the distance from the pollen source. A literature survey confirmed that power-law function could fit in most cases. The b coefficient was lower than 2. The number of fertilized flowers by background (herbicide-susceptible) pollen grains was uniform across the whole field. Airborne pollen had a fertilization impact equivalent to that of one adjacent bolter. The individual dispersal function from different pollen sources can be integrated to provide the pollen cloud composition for a given target plant, thus allowing modeling of gene flow in a field, inter-fields in a small region, and also in seed-production area. Long-distance pollen flow is not negligible and could play an important role in rapid transgene dispersal from crop to wild and weed beets in the landscape. The removing of any bolting, herbicide-resistant sugar beet should be compulsory to prevent the occurrence of herbicide-resistant weed beet, thus preventing gene flow to wild populations and preserving the sustainable utility of the resistant varieties. Whether such a goal is attainable remains an open question and certainly would be worth a large scale experimental study.
引用
收藏
页码:1083 / 1092
页数:10
相关论文
共 50 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS F
[2]   A combined method to study gene flow from cultivated sugar beet to ruderal beets in the glasshouse and open field [J].
Alibert, B ;
Sellier, H ;
Souvré, A .
EUROPEAN JOURNAL OF AGRONOMY, 2005, 23 (02) :195-208
[3]   Low level of gene flow from cultivated beets (Beta vulgaris L. ssp vulgaris) into Danish populations of sea beet (Beta vulgaris L. ssp maritima (L.) Arcangeli) [J].
Andersen, NS ;
Siegismund, HR ;
Meyer, V ;
Jorgensen, RB .
MOLECULAR ECOLOGY, 2005, 14 (05) :1391-1405
[4]   CONTROL OF POLLINATION IN SUGAR-BEET [J].
ARCHIMOWITSCH, A .
BOTANICAL REVIEW, 1949, 15 (09) :613-628
[5]   Using genetic markers to estimate the pollen dispersal curve [J].
Austerlitz, F ;
Dick, CW ;
Dutech, C ;
Klein, EK ;
Oddou-Muratorio, S ;
Smouse, PE ;
Sork, VL .
MOLECULAR ECOLOGY, 2004, 13 (04) :937-954
[6]  
Bartsch D, 2001, ECOL APPL, V11, P142, DOI 10.1890/1051-0761(2001)011[0142:BOHBTV]2.0.CO
[7]  
2
[8]   Impact of gene flow from cultivated beet on genetic diversity of wild sea beet populations [J].
Bartsch, D ;
Lehnen, M ;
Clegg, J ;
Pohl-Orf, M ;
Schuphan, I ;
Ellstrand, NC .
MOLECULAR ECOLOGY, 1999, 8 (10) :1733-1741
[9]   CONTAMINATION OF SEED CROPS .2. WIND POLLINATION [J].
BATEMAN, AJ .
HEREDITY, 1947, 1 (02) :235-246
[10]   THE ORIGIN AND EVOLUTION OF WEED BEETS - CONSEQUENCES FOR THE BREEDING AND RELEASE OF HERBICIDE-RESISTANT TRANSGENIC SUGAR-BEETS [J].
BOUDRY, P ;
MORCHEN, M ;
SAUMITOULAPRADE, P ;
VERNET, P ;
VANDIJK, H .
THEORETICAL AND APPLIED GENETICS, 1993, 87 (04) :471-478