Multilevel sensitive reconstruction of polyhedral surfaces from parallel slices

被引:38
作者
Barequet, G
Shapiro, D
Tal, A
机构
[1] Tel Aviv Univ, Dept Comp Sci, IL-69978 Tel Aviv, Israel
[2] Johns Hopkins Univ, Ctr Geometr Comp, Dept Comp Sci, Baltimore, MD 21218 USA
[3] Princeton Univ, Dept Comp Sci, Princeton, NJ 08540 USA
[4] Weizmann Inst Sci, Dept Appl Math, IL-76100 Rehovot, Israel
关键词
surface reconstruction; interpolation; triangulation;
D O I
10.1007/s003710050201
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present an algorithm for reconstructing a solid model from a series of planar cross-sections. In most previous works the layers are assumed to be independent: each layer is interpolated separately, and the concatenation of the interpolated layers is considered the solution to the whole problem. The resulting surface can therefore exhibit abrupt changes. The main contribution of this work is avoiding this assumption. We use the slopes of triangles created in the interpolation of neighboring layers to guide the interpolation of the current layer. As a result, consecutive layers are connected smoothly. We also discuss various objective functions that aim to optimize the reconstruction and evaluate these functions using various criteria.
引用
收藏
页码:116 / 133
页数:18
相关论文
共 41 条
[11]  
DEV P, 1984, P SOC PHOTO-OPT INST, V507, P52, DOI 10.1117/12.944937
[12]   Volume rendering [J].
Drebin, Robert A. ;
Carpenter, Loren ;
Hanrahan, Pat .
Computer Graphics (ACM), 1988, 22 (04) :65-74
[13]   A TRIANGULATION ALGORITHM FROM ARBITRARY SHAPED MULTIPLE PLANAR CONTOURS [J].
EKOULE, AB ;
PEYRIN, FC ;
ODET, CL .
ACM TRANSACTIONS ON GRAPHICS, 1991, 10 (02) :182-199
[14]   ANIMATED 3D CT IMAGING [J].
FARRELL, EJ ;
YANG, WC ;
ZAPPULLA, RA .
IEEE COMPUTER GRAPHICS AND APPLICATIONS, 1985, 5 (12) :26-32
[15]  
Fix J. D., 1998, Proceedings of the Fourteenth Annual Symposium on Computational Geometry, P240, DOI 10.1145/276884.276912
[16]   VOLUME RENDERING [J].
FRENKEL, KA .
COMMUNICATIONS OF THE ACM, 1989, 32 (04) :426-435
[17]   OPTIMAL SURFACE RECONSTRUCTION FROM PLANAR CONTOURS [J].
FUCHS, H ;
KEDEM, ZM ;
USELTON, SP .
COMMUNICATIONS OF THE ACM, 1977, 20 (10) :693-702
[18]  
GANAPATHY S, 1982, COMPUT GRAPHICS ACM, V16, P69, DOI DOI 10.1145/965145.801264
[19]   TWO-DIMENSIONAL, MODEL-BASED, BOUNDARY MATCHING USING FOOTPRINTS [J].
KALVIN, A ;
SCHONBERG, E ;
SCHWARTZ, JT ;
SHARIR, M .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 1986, 5 (04) :38-55
[20]  
KALVIN AD, 1992, RCU7600 IBM TJ WATS