Transmembrane domain III plays an important role in ion binding and permeation in the glycine transporter GLYT2

被引:22
作者
Ponce, J
Biton, B
Benavides, J
Avenet, P
Aragón, C [1 ]
机构
[1] Univ Autonoma Madrid, Fac Ciencias, Ctr Biol Mol Severo Ochoa, CSIC, E-28049 Madrid, Spain
[2] Sanofi Synthelab, CNS Res Dept, F-92290 Chatenay Malabry, France
关键词
D O I
10.1074/jbc.275.18.13856
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The neuronal glycine transporter GLYT2 takes up glycine from the extracellular space by an electrogenic process where this neurotransmitter is co-transported with sodium and chloride ions. We report in this paper that tyrosine at position 289 of GLYT2a is crucial for ion coupling, glycine affinity and sodium selectivity, stressing the essential role played by this residue of transmembrane domain III in the mechanism of transport. Substitution to tryptophan (Y289W), phenylalanine (Y289F), or serine (Y289S), renders transporters unable to catalyze glycine uptake. Measurements of glycine evoked steady-state currents in transfected HEK-293 cells reveal EC50 values for glycine 17-fold (Y289F) and 45-fold (Y289S) higher than that of the wild type transporter. Sodium dependence is severely altered in tyrosine 289 mutants, both at the level of apparent affinity and cooperativity, with the more dramatic change corresponding to the less conservative substitution (Y289S), Accordingly, sodium selectivity is gradually lost in Y289F and Y289S mutants, and chloride dependence of glycine evoked currents is markedly decreased in Y289F and Y289S mutants. In the absence of three-dimensional information from these transporters, these results provide experimental evidence supporting the hypothesis of transmembrane domain III being part of a common permeation pathway for substrate and cotransported ions.
引用
收藏
页码:13856 / 13862
页数:7
相关论文
共 52 条
[1]   GENE STRUCTURE AND GLIAL EXPRESSION OF THE GLYCINE TRANSPORTER GLYT1 IN EMBRYONIC AND ADULT RODENTS [J].
ADAMS, RH ;
SATO, K ;
SHIMADA, S ;
TOHYAMA, M ;
PUSCHEL, AW ;
BETZ, H .
JOURNAL OF NEUROSCIENCE, 1995, 15 (03) :2524-2532
[2]   NEUROTRANSMITTER TRANSPORTERS - RECENT PROGRESS [J].
AMARA, SG ;
KUHAR, MJ .
ANNUAL REVIEW OF NEUROSCIENCE, 1993, 16 :73-93
[3]   STOICHIOMETRY OF SODIUM-COUPLED AND CHLORIDE-COUPLED GLYCINE TRANSPORT IN SYNAPTIC PLASMA-MEMBRANE VESICLES DERIVED FROM RAT-BRAIN [J].
ARAGON, MC ;
GIMENEZ, C ;
MAYOR, F .
FEBS LETTERS, 1987, 212 (01) :87-90
[4]  
Barker EL, 1999, J NEUROSCI, V19, P4705
[5]   Tyrosine 140 of the gamma-aminobutyric acid transporter GAT-1 plays a critical role in neurotransmitter recognition [J].
Bismuth, Y ;
Kavanaugh, MP ;
Kanner, BI .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (26) :16096-16102
[6]   Analysis of a gene encoding two glycine transporter variants reveals alternative promoter usage and a novel gene structure [J].
Borowsky, B ;
Hoffman, BJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (44) :29077-29085
[7]   2 GLYCINE TRANSPORTER VARIANTS WITH DISTINCT LOCALIZATION IN THE CNS AND PERIPHERAL-TISSUES ARE ENCODED BY A COMMON GENE [J].
BOROWSKY, B ;
MEZEY, E ;
HOFFMAN, BJ .
NEURON, 1993, 10 (05) :851-863
[8]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[9]   Channel behavior in a gamma-aminobutyrate transporter [J].
Cammack, JN ;
Schwartz, EA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (02) :723-727
[10]   A GABA TRANSPORTER OPERATES ASYMMETRICALLY AND WITH VARIABLE STOICHIOMETRY [J].
CAMMACK, JN ;
RAKHILIN, SV ;
SCHWARTZ, EA .
NEURON, 1994, 13 (04) :949-960