Molecular mechanisms of the effects of low concentrations of taxol in anaplastic thyroid cancer cells

被引:30
作者
Pushkarev, VM
Starenki, DV
Saenko, VA
Namba, H
Kurebayashi, J
Tronko, MD
Yamashita, S
机构
[1] Nagasaki Univ, Grad Sch Biomed Sci, Dept Mol Med, Atom Bomb Dis Inst, Nagasaki 8528523, Japan
[2] Ukraine Acad Med Sci, Inst Endocrinol & Metab, UA-04114 Kiev, Ukraine
[3] Kawasaki Med Sch, Okayama 7010192, Japan
关键词
D O I
10.1210/en.2004-0127
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Understanding the detailed mechanisms of a chemotherapeutic agent action on cancer cells is essential for planning the clinical applications because drug effects are often tissue and cell type specific. This study set out to elucidate the molecular pathways of Taxol effects in human anaplastic thyroid cancer cells using as an experimental model four cell lines, ARO, KTC-2, KTC-3 (anaplastic thyroid cancer), and FRO (undifferentiated follicular cancer), and primary thyrocytes. All cell lines were sensitive to Taxol, although to different extent. In primary thyrocytes the drug displayed substantially lower cytotoxicity. In thyroid cancer cells, Taxol-induced changes characteristic to apoptosis such as poly (ADP-ribose) polymerase and procaspase cleavage and alteration of membrane asymmetry only within a narrow concentration range, from 6 to 50 nM. At higher concentration, other form(s) of cell death perhaps associated with mitochondrial collapse was observed. Low doses of Taxol enhanced Bcl2 phosphorylation and led to its degradation observed on the background of a sustained or increasing Bax level and accumulation of survivin and X-chromosome-linked inhibitor of apoptosis. c-jun-NH2 terminal kinase activation was essential for the apoptosis in anaplastic thyroid cancer cells, whereas Raf/MAPK kinase/ERK and phosphatidylinositol-3-OH kinase/Akt were likely to comprise main survival mechanisms. Our results suggest an importance of cautious interpreting of biological effects of Taxol in laboratory studies and for determining optimal doses of Taxol to achieve the desired therapeutic effect in anaplastic thyroid cancers.
引用
收藏
页码:3143 / 3152
页数:10
相关论文
共 56 条
[11]   Ten years of protein kinase B signalling: a hard Akt to follow [J].
Brazil, DP ;
Hemmings, BA .
TRENDS IN BIOCHEMICAL SCIENCES, 2001, 26 (11) :657-664
[12]   Bcl-2 phosphorylation and proteasome-dependent degradation induced by paclitaxel treatment: Consequences on sensitivity of isolated mitochondria to bid [J].
Brichese, L ;
Barboule, N ;
Heliez, C ;
Valette, A .
EXPERIMENTAL CELL RESEARCH, 2002, 278 (01) :101-111
[13]   Tubulin is an inherent component of mitochondrial membranes that interacts with the voltage-dependent anion channel [J].
Carré, M ;
André, N ;
Carles, G ;
Borghi, H ;
Brichese, L ;
Briand, C ;
Braguer, D .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (37) :33664-33669
[14]  
Clark OH, 1996, WESTERN J MED, V165, P131
[15]  
Deacon K, 2003, MOL BIOL CELL, V14, P2071, DOI 10.1091/mbc.e02-10-0653
[16]   The function of multiple IκB:NF-κB complexes in the resistance of cancer cells to Taxol-induced apoptosis [J].
Dong, QG ;
Sclabas, GM ;
Fujioka, S ;
Schmidt, C ;
Peng, BL ;
Wu, TA ;
Tsao, MS ;
Evans, DB ;
Abbruzzese, JL ;
McDonnell, TJ ;
Chiao, PJ .
ONCOGENE, 2002, 21 (42) :6510-6519
[17]   AKT inhibition is associated with chemosensitisation in the pancreatic cancer cell line MIA-PaCa-2 [J].
Fahy, BN ;
Schlieman, M ;
Virudachalam, S ;
Bold, RJ .
BRITISH JOURNAL OF CANCER, 2003, 89 (02) :391-397
[18]   Bcl-2 down-regulation is a novel mechanism of paclitaxel resistance [J].
Ferlini, C ;
Raspaglio, G ;
Mozzetti, S ;
Distefano, M ;
Filippetti, F ;
Martinelli, E ;
Ferrandina, G ;
Gallo, D ;
Ranelletti, FO ;
Scambia, G .
MOLECULAR PHARMACOLOGY, 2003, 64 (01) :51-58
[19]   PI3K/Akt and apoptosis: size matters [J].
Franke, TF ;
Hornik, CP ;
Segev, L ;
Shostak, GA ;
Sugimoto, C .
ONCOGENE, 2003, 22 (56) :8983-8998
[20]  
Freshney R. I., 2010, CULTURE ANIMAL CELLS