Ionization energy reductions in small 2,5-dihydroxybenzoic acid-proline clusters

被引:28
作者
Kinsel, GR
Knochenmuss, R
Setz, P
Land, CM
Goh, SK
Archibong, EF
Hardesty, JH
Marynick, DS
机构
[1] Univ Texas, Dept Chem & Biochem, Arlington, TX 76019 USA
[2] Novartis Pharma AG, CH-4002 Basel, Switzerland
[3] Swiss Fed Inst Technol, Organ Chem Lab, CH-8092 Zurich, Switzerland
来源
JOURNAL OF MASS SPECTROMETRY | 2002年 / 37卷 / 11期
关键词
matrix-assisted laser desorption/ionization mass spectrometry; ionization mechanism(s); ionization energies; clusters; computational modeling;
D O I
10.1002/jms.374
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The photoionization of (pro)(n)DHB (pro=proline, DHB=2,5-dihydroxybenzoic acid, n=0, 1, 2 or 4) clusters was studied both experimentally and computationally. Experimentally the (pro)(n)DHB clusters are generated in the gas phase by laser desorption and supersonic jet entrainment. The photoionization thresholds are then determined by the mass-selective measurement of both one- and two-color photoionization efficiency curves. These experiments demonstrate that the ionization energies (IEs) of the (pro)(n)DHB clusters are substantially reduced in comparison with the IE of free DHB. Computational studies of the (pro)(n)DHB clusters provide insights into the mechanism of IE reduction. For the (pro)DHB system the IE reduction results from spin delocalization in the ion state of the cluster. In contrast, for the (pro)(2)DHB and (pro)(4)DHB clusters the IE reduction results from an inductive delocalization of electron density from pro to DHB in the ground state of the cluster. This latter effect, which is a result of the specific hydrogen-bonding interactions occurring in the mixed clusters, leads to IE reductions of >1 eV. Finally, determination of the energetics of the (pro)(2)DHB radical cation demonstrate that the DHB-to-proline proton transfer reaction is a barrierless, exoergic process in the ion state and that energetic demands for cluster dissociation to protonated (pro)(2) plus a deprotonated DHB radical are substantially lower than those for cluster dissociation to (pro)(2) plus DHB+circle. Cumulatively, these studies provide new energetic and mechanistic insights into both primary and secondary MALDI ionization processes. Copyright (C) 2002 John Wiley Sons, Ltd.
引用
收藏
页码:1131 / 1140
页数:10
相关论文
共 35 条
[31]   NEW COUMARIN DYES WITH RIGIDIZED STRUCTURE FOR FLASHLAMP-PUMPED DYE LASERS [J].
REYNOLDS, GA ;
DREXHAGE, KH .
OPTICS COMMUNICATIONS, 1975, 13 (03) :222-225
[32]  
Zenobi R, 1998, MASS SPECTROM REV, V17, P337, DOI 10.1002/(SICI)1098-2787(1998)17:5<337::AID-MAS2>3.0.CO
[33]  
2-S
[34]  
Zhigilei LV, 1998, RAPID COMMUN MASS SP, V12, P1273, DOI 10.1002/(SICI)1097-0231(19980930)12:18<1273::AID-RCM257>3.0.CO
[35]  
2-E