Effect on tumor cells of blocking survival response to glucose deprivation

被引:183
作者
Park, HR
Tomida, A
Sato, S
Tsukumo, Y
Yun, J
Yamori, T
Hayakawa, Y
Tsuruo, T
Shin-Ya, K [1 ]
机构
[1] Univ Tokyo, Inst Mol & Cellular Biosci, Biol Chem Lab, Bunkyo Ku, Tokyo 1130032, Japan
[2] Univ Tokyo, Inst Mol & Cellular Biosci, Lab Cell Growth & Regulat, Bunkyo Ku, Tokyo 1130032, Japan
[3] Japanese Fdn Canc Res, Ctr Canc Chemotherapy, Tokyo 170, Japan
来源
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE | 2004年 / 96卷 / 17期
关键词
D O I
10.1093/jnci/djh243
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: Glucose deprivation, a feature of poorly vascularized solid tumors, activates the unfolded protein response (UPR), a stress-signaling pathway, in tumor cells. We recently isolated a novel macrocyclic compound, versipelostatin (VST), that inhibits transcription from the promoter of GRP78, a gene that is activated as part of the UPR. We examined the effect of VST on the UPR induced by glucose deprivation or other stressors and on tumor growth in vivo. Methods: Human colon cancer HT-29, fibrosarcoma HT1080, and stomach cancer MKN74 cells were cultured in the absence of glucose or in the presence of glucose and a UPR-inducing chemical stressor (the N-glycosylation inhibitor tunicamycin, the calcium ionophore A23187, or the hypoglycemia-mimicking agent 2-deoxyglucose [2DG]). The effect of VST on UPR induction was determined by reverse transcription-polymerase chain reaction and immunoblot analysis of the UPR target genes GRP78 and GRP94; by immunoblot analysis of the UPR transcriptional activators ATF6, XBP1, and ATF4; and by analyzing reporter gene expression in cells transiently transfected with a GRP78 promoter-reporter gene. Cell sensitivity to VST was examined with a colony formation assay and flow cytometry. In vivo antitumor activity of VST was assessed with an MKN74 xenograft model. Results: VST inhibited expression of UPR target genes in glucose-deprived or 2DG-treated cells but not in cells treated with tunicamycin or A23187. VST also inhibited the production of the UPR transcriptional activators XBP1 and ATF4 during glucose deprivation. The UPR-inhibitory action of VST was seen only in conditions of glucose deprivation and caused selective and massive killing of the glucose-deprived cells. VST alone and in combination with cisplatin statistically significantly (P = .004 and P < .001 for comparisons with untreated control, respectively) inhibited tumor growth of MKN74 xenografts. Conclusion: Disruption of the UPR may provide a novel therapeutic approach to targeting glucose-deprived solid tumors.
引用
收藏
页码:1300 / 1310
页数:11
相关论文
共 41 条
[1]   A role for hypoxia and hypoxia-inducible transcription factors in tumor physiology [J].
Acker, T ;
Plate, KH .
JOURNAL OF MOLECULAR MEDICINE-JMM, 2002, 80 (09) :562-575
[2]  
Brown JM, 1998, CANCER RES, V58, P1408
[3]   IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA [J].
Calfon, M ;
Zeng, HQ ;
Urano, F ;
Till, JH ;
Hubbard, SR ;
Harding, HP ;
Clark, SG ;
Ron, D .
NATURE, 2002, 415 (6867) :92-96
[4]  
Dan S, 2002, CANCER RES, V62, P1139
[5]   Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase [J].
Harding, HP ;
Zhang, YH ;
Ron, D .
NATURE, 1999, 397 (6716) :271-274
[6]   Perk is essential for translational regulation and cell survival during the unfolded protein response [J].
Harding, HP ;
Zhang, YH ;
Bertolotti, A ;
Zeng, HQ ;
Ron, D .
MOLECULAR CELL, 2000, 5 (05) :897-904
[7]   Regulated translation initiation controls stress-induced gene expression in mammalian cells [J].
Harding, HP ;
Novoa, I ;
Zhang, YH ;
Zeng, HQ ;
Wek, R ;
Schapira, M ;
Ron, D .
MOLECULAR CELL, 2000, 6 (05) :1099-1108
[8]   An integrated stress response regulates amino acid metabolism and resistance to oxidative stress [J].
Harding, HP ;
Zhang, YH ;
Zeng, HQ ;
Novoa, I ;
Lu, PD ;
Calfon, M ;
Sadri, N ;
Yun, C ;
Popko, B ;
Paules, R ;
Stojdl, DF ;
Bell, JC ;
Hettmann, T ;
Leiden, JM ;
Ron, D .
MOLECULAR CELL, 2003, 11 (03) :619-633
[9]   Transcriptional and translational control in the mammalian unfolded protein response [J].
Harding, HP ;
Calfon, M ;
Urano, F ;
Novoa, I ;
Ron, D .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 2002, 18 :575-599
[10]   Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress [J].
Haze, K ;
Yoshida, H ;
Yanagi, H ;
Yura, T ;
Mori, K .
MOLECULAR BIOLOGY OF THE CELL, 1999, 10 (11) :3787-3799