Path-following for linear systems with unstable zero dynamics

被引:16
作者
Dacic, Dragan B. [1 ]
Kokotovic, Petar V.
机构
[1] Univ Melbourne, Dept Elect & Elect Engn, Parkville, Vic 3010, Australia
[2] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
关键词
path-following; reference tracking; unstable zero dynamics;
D O I
10.1016/j.automatica.2006.05.014
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A constructive solution to the path-following problem for MIMO linear systems with unstable zero dynamics is developed. While the original control variable steers the system output along the path, the path parameter 0 is used as an additional control to stabilize zero dynamics with a feedback law which is nonlinear due to the path constraint. A sufficient condition for solvability of the path-following problem is given in terms of the geometric properties of the path. When this condition is satisfied, an arbitrary small L-2 norm of path-following error can be achieved, thus avoiding performance limitations of the standard reference tracking problem imposed by unstable zero dynamics. (C) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1673 / 1683
页数:11
相关论文
共 18 条
[11]  
MARRUEDO DL, 2002, P ACC ANCH AK US
[12]  
MARRUEDO DL, 2002, P 41 IEEE CDC LAS VE
[13]   PERFORMANCE LIMITATIONS OF NONMINIMUM PHASE SYSTEMS IN THE SERVOMECHANISM PROBLEM [J].
QIU, L ;
DAVISON, EJ .
AUTOMATICA, 1993, 29 (02) :337-349
[14]   GLOBAL STABILIZATION OF PARTIALLY LINEAR COMPOSITE SYSTEMS [J].
SABERI, A ;
KOKOTOVIC, PV ;
SUSSMANN, HJ .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1990, 28 (06) :1491-1503
[15]   SPECIAL COORDINATE BASIS FOR MULTIVARIABLE LINEAR-SYSTEMS - FINITE AND INFINITE ZERO STRUCTURE, SQUARING DOWN AND DECOUPLING [J].
SANNUTI, P ;
SABERI, A .
INTERNATIONAL JOURNAL OF CONTROL, 1987, 45 (05) :1655-1704
[16]   Feedback limitations in nonlinear systems: From bode integrals to cheap control [J].
Seron, MM ;
Braslavsky, JH ;
Kokotovic, PV ;
Mayne, DQ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (04) :829-833
[17]   Robust output maneuvering for a class of nonlinear systems [J].
Skjetne, R ;
Fossen, TI ;
Kokotovic, PV .
AUTOMATICA, 2004, 40 (03) :373-383
[18]  
Skjetne R., 2002, P 15 INT S MATH THEO