Multiplexed and Programmable Regulation of Gene Networks with an Integrated RNA and CRISPR/Cas Toolkit in Human Cells

被引:341
作者
Nissim, Lior [1 ]
Perli, Samuel D. [1 ]
Fridkin, Alexandra [1 ]
Perez-Pinera, Pablo [1 ]
Lu, Timothy K. [1 ]
机构
[1] MIT, Dept Biol Engn & Elect Engn & Comp Sci, Synthet Biol Grp, Elect Res Lab, Cambridge, MA 02142 USA
基金
美国国家卫生研究院;
关键词
LONG NONCODING RNAS; IN-VIVO; TRANSCRIPTION FACTORS; SYNTHETIC BIOLOGY; MAMMALIAN-CELLS; REGULATION SYSTEMS; CANCER-CELLS; CAS SYSTEMS; EXPRESSION; RIBOZYME;
D O I
10.1016/j.molcel.2014.04.022
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
RNA-based regulation and CRISPR/Cas transcription factors (CRISPR-TFs) have the potential to be integrated for the tunable modulation of gene networks. A major limitation of this methodology is that guide RNAs (gRNAs) for CRISPR-TFs can only be expressed from RNA polymerase III promoters in human cells, limiting their use for conditional gene regulation. We present new strategies that enable expression of functional gRNAs from RNA polymerase II promoters and multiplexed production of proteins and gRNAs from a single transcript in human cells. We use multiple RNA regulatory strategies, including RNA-triple-helix structures, introns, microRNAs, and ribozymes, with Cas9-based CRISPR-TFs and Cas6/Csy4-based RNA processing. Using these tools, we efficiently modulate endogenous promoters and implement tunable synthetic circuits, including multistage cascades and RNA-dependent networks that can be rewired with Csy4 to achieve complex behaviors. This toolkit can be used for programming scalable gene circuits and perturbing endogenous networks for biology, therapeutic, and synthetic biology applications.
引用
收藏
页码:698 / 710
页数:13
相关论文
共 71 条
[1]   In vivo kinetics of mRNA splicing and transport in mammalian cells [J].
Audibert, A ;
Weil, D ;
Dautry, F .
MOLECULAR AND CELLULAR BIOLOGY, 2002, 22 (19) :6706-6718
[2]   Programmable single-cell mammalian biocomputers [J].
Auslaender, Simon ;
Auslaender, David ;
Mueller, Marius ;
Wieland, Markus ;
Fussenegger, Martin .
NATURE, 2012, 487 (7405) :123-+
[3]   Toward controlling gene expression at will:: Specific regulation of the erbB-2/HER-2 promoter by using polydactyl zinc finger proteins constructed from modular building blocks [J].
Beerli, RR ;
Segal, DJ ;
Dreier, B ;
Barbas, CF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (25) :14628-14633
[4]   Engineering polydactyl zinc-finger transcription factors [J].
Beerli, RR ;
Barbas, CF .
NATURE BIOTECHNOLOGY, 2002, 20 (02) :135-141
[5]   Biomolecular computing systems: principles, progress and potential [J].
Benenson, Yaakov .
NATURE REVIEWS GENETICS, 2012, 13 (07) :455-468
[6]   The latency associated transcripts (LAT) of herpes simplex virus: still no end in sight [J].
Block, TM ;
Hill, JM .
JOURNAL OF NEUROVIROLOGY, 1997, 3 (05) :313-321
[7]   Rational Diversification of a Promoter Providing Fine-Tuned Expression and Orthogonal Regulation for Synthetic Biology [J].
Blount, Benjamin A. ;
Weenink, Tim ;
Vasylechko, Serge ;
Ellis, Tom .
PLOS ONE, 2012, 7 (03)
[8]   Mechanisms of alternative splicing regulation: insights from molecular and genomics approaches [J].
Chen, Mo ;
Manley, James L. .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2009, 10 (11) :741-754
[9]   TiProD: the Tissue-specific Promoter Database [J].
Chen, Xin ;
Wu, Jian-min ;
Hornischer, Klaus ;
Kel, Alexander ;
Wingender, Edgar .
NUCLEIC ACIDS RESEARCH, 2006, 34 :D104-D107
[10]   Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system [J].
Cheng, Albert W. ;
Wang, Haoyi ;
Yang, Hui ;
Shi, Linyu ;
Katz, Yarden ;
Theunissen, Thorold W. ;
Rangarajan, Sudharshan ;
Shivalila, Chikdu S. ;
Dadon, Daniel B. ;
Jaenisch, Rudolf .
CELL RESEARCH, 2013, 23 (10) :1163-1171