Computing visual target distinctness through selective filtering, statistical features, and visual patterns

被引:14
作者
Fdez-Vidal, XR [1 ]
Toet, A
Garcia, JA
Fdez-Valdivia, J
机构
[1] Univ Santiago de Compostela, Fac Fis, Dept Fis Aplicada, Santiago De Compostela 15706, Spain
[2] TNO, Human Factors Res Inst, NL-3769 ZG Soesterberg, Netherlands
[3] Univ Granada, Dept Ciencias Computac & IA, ETS Ingn Informat, E-18071 Granada, Spain
关键词
target distinctness measures; image representational model; psychophysical experiments; visual target distinctness;
D O I
10.1117/1.602360
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper presents three computational visual distinctness measures, computed from image representational models based on selective filtering, statistical features, and visual patterns, respectively. They are applied to quantify the visual distinctness of targets in complex natural scenes. The measure that applies a simple decision rule to the distances between segregated visual patterns is shown (1) to predict human observer performance in search and detection tasks on complex natural imagery, and (2) to correlate strongly with visual target distinctness estimated by human observers. (C) 2000 Society of Photo-Optical Instrumentation Engineers. [S0091-3286(00)03101-9].
引用
收藏
页码:267 / 281
页数:15
相关论文
共 32 条
[21]   FEATURE DETECTION FROM LOCAL ENERGY [J].
MORRONE, MC ;
OWENS, RA .
PATTERN RECOGNITION LETTERS, 1987, 6 (05) :303-313
[22]  
OLZAK LA, 1986, HDB PERCEPTION HUMAN, V1
[23]  
RIDDER H, 1992, P SPIE 3, V1666, P16
[24]   The RGF pandemonium: A low-level representational model for images [J].
Rodriguez-Sanchez, R ;
Garcia, JA ;
Fdez-Valdivia, J .
PATTERN RECOGNITION, 1998, 31 (11) :1797-1810
[25]   The RGFF representational model:: A system for the automatically learned partitioning of "visual patterns" in digital images [J].
Rodriguez-Sánchez, R ;
Garcia, JA ;
Fdez-Valdivia, J ;
Fdez-Vidal, XR .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1999, 21 (10) :1044-1073
[26]   Object detection in natural backgrounds predicted by discrimination performance and models [J].
Rohaly, AM ;
Ahumada, AJ ;
Watson, AB .
VISION RESEARCH, 1997, 37 (23) :3225-3235
[27]  
ROTMAN SR, 1989, OPT ENG, V28, P1216
[28]  
TOET A, 1997, TM97A039 TNO HUM FAC, P74
[29]   FEATURE-INTEGRATION THEORY OF ATTENTION [J].
TREISMAN, AM ;
GELADE, G .
COGNITIVE PSYCHOLOGY, 1980, 12 (01) :97-136
[30]   NOTE ON CONSTRUCTION OF DIGRAM-BALANCED LATIN SQUARES [J].
WAGENAAR, WA .
PSYCHOLOGICAL BULLETIN, 1969, 72 (06) :384-&