Passive particle dynamics in a flow exhibiting transition to turbulence

被引:14
作者
Benkadda, S
Gabbai, P
Zaslavsky, GM
机构
[1] PRINCETON UNIV, PLASMA PHYS LAB, PRINCETON, NJ 08543 USA
[2] NYU, COURANT INST MATH SCI, NEW YORK, NY 10012 USA
[3] NYU, DEPT PHYS, NEW YORK, NY 10003 USA
关键词
D O I
10.1063/1.872577
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The behavior of a passive particle in a flow that exhibits bifurcations in the transition to a turbulent regime is investigated. The flow considered is a variant of the Charney-Hasegawa-Mima equation. The scalar particle dynamics is considered for different regimes of the main flow. A regime of anomalous diffusion (hypodiffusion) is observed when the field has few harmonics whereas normal diffusion occurs in the strange attractor regime. The analysis of the singular orbit reveals the presence of traps and flights that control the transport. (C) 1997 American Institute of Physics.
引用
收藏
页码:2864 / 2870
页数:7
相关论文
共 40 条
[1]   BEYOND ALL ORDERS - SINGULAR PERTURBATIONS IN A MAPPING [J].
AMICK, C ;
CHING, ESC ;
KADANOFF, LP ;
ROMKEDAR, V .
JOURNAL OF NONLINEAR SCIENCE, 1992, 2 (01) :9-67
[2]   STIRRING BY CHAOTIC ADVECTION [J].
AREF, H .
JOURNAL OF FLUID MECHANICS, 1984, 143 (JUN) :1-21
[3]   VORTICES, KINEMATICS AND CHAOS [J].
AREF, H ;
JONES, SW ;
MOFINA, S ;
ZAWADZKI, I .
PHYSICA D, 1989, 37 (1-3) :423-440
[4]  
ARNOLD V, 1965, CR HEBD ACAD SCI, V261, P17
[5]   ERGODIC STREAM-LINES IN STEADY CONVECTION [J].
ARTER, W .
PHYSICS LETTERS A, 1983, 97 (05) :171-174
[6]   VORTICITY AND PASSIVE-SCALAR DYNAMICS IN TWO-DIMENSIONAL TURBULENCE [J].
BABIANO, A ;
BASDEVANT, C ;
LEGRAS, B ;
SADOURNY, R .
JOURNAL OF FLUID MECHANICS, 1987, 183 :379-397
[7]   CHAOTIC ADVECTION IN POINT VORTEX MODELS AND 2-DIMENSIONAL TURBULENCE [J].
BABIANO, A ;
BOFFETTA, G ;
PROVENZALE, A ;
VULPIANI, A .
PHYSICS OF FLUIDS, 1994, 6 (07) :2465-2474
[8]   CHAOTIC STREAMLINES IN PRE-TURBULENT STATES [J].
BELOSHAPKIN, VV ;
CHERNIKOV, AA ;
NATENZON, MY ;
PETROVICHEV, BA ;
SAGDEEV, RZ ;
ZASLAVSKY, GM .
NATURE, 1989, 337 (6203) :133-137
[9]  
Charney J.G., 1948, GEOFYS PUBL, V17, P3
[10]  
Chernikov A. A., 1991, Chaos, V1, P206, DOI 10.1063/1.165830