CFTR regulates phagosome acidification in macrophages and alters bactericidal activity

被引:404
作者
Di, Anke
Brown, Mary E.
Deriy, Ludmila V.
Li, Chunying
Szeto, Frances L.
Chen, Yimei
Huang, Ping
Tong, Jiankun
Naren, Anjaparavanda P.
Bindokas, Vytautas
Palfrey, H. Clive
Nelson, Deborah J. [1 ]
机构
[1] Univ Chicago, Dept Neurobiol Pharmacol & Physiol, Chicago, IL 60637 USA
[2] Univ Tennessee, Dept Physiol, Memphis, TN 38163 USA
[3] Univ Chicago, Dept Mol Genet & Cell Biol, Chicago, IL 60637 USA
[4] Univ Chicago, Dept Med, Chicago, IL 60637 USA
关键词
D O I
10.1038/ncb1456
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Acidification of phagosomes has been proposed to have a key role in the microbicidal function of phagocytes. Here, we show that in alveolar macrophages the cystic fibrosis transmembrane conductance regulator Cl- channel (CFTR) participates in phagosomal pH control and has bacterial killing capacity. Alveolar macrophages from Cftr(-/-) mice retained the ability to phagocytose and generate an oxidative burst, but exhibited defective killing of internalized bacteria. Lysosomes from CFTR-null macrophages failed to acidify, although they retained normal fusogenic capacity with nascent phagosomes. We hypothesize that CFTR contributes to lysosomal acidification and that in its absence phagolysosomes acidify poorly, thus providing an environment conducive to bacterial replication.
引用
收藏
页码:933 / U52
页数:23
相关论文
共 50 条
[31]   cAMP cascade (PKA, epac, adenylyl cyclase, Gi, and phosphodiesterases) regulates myelin phagocytosis mediated by complement receptor-3 and scavenger receptor-AI/II in microglia and macrophages [J].
Makranz, C ;
Cohen, G ;
Reichert, F ;
Kodama, T ;
Rotshenker, S .
GLIA, 2006, 53 (04) :441-448
[32]  
McCarty NA, 2000, J EXP BIOL, V203, P1947
[33]   Abnormalities in the pulmonary innate immune system in cystic fibrosis [J].
Moraes, TJ ;
Plumb, J ;
Martin, R ;
Vachon, E ;
Cherepanov, V ;
Koh, A ;
Loeve, C ;
Jongstra-Bilen, J ;
Zurawska, JH ;
Kus, JV ;
Burrows, LL ;
Grinstein, S ;
Downey, GP .
AMERICAN JOURNAL OF RESPIRATORY CELL AND MOLECULAR BIOLOGY, 2006, 34 (03) :364-374
[34]   Reduced iC3b-mediated phagocytotic capacity of pulmonary neutrophils in cystic fibrosis [J].
Morris, MR ;
Doull, IJM ;
Dewitt, S ;
Hallett, MB .
CLINICAL AND EXPERIMENTAL IMMUNOLOGY, 2005, 142 (01) :68-75
[35]   Regulation of CFTR chloride channels by syntaxin and Munc18 isoforms [J].
Naren, AP ;
Nelson, DJ ;
Xie, WW ;
Jovov, B ;
Pevsner, J ;
Bennett, MK ;
Benos, DJ ;
Quick, MW ;
Kirk, KL .
NATURE, 1997, 390 (6657) :302-305
[36]   Novel buffer systems for macromolecular crystallization [J].
Newman, J .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2004, 60 :610-612
[37]   Intracellular fate of Mycobacterium avium: Use of dual-label spectrofluorometry to investigate the influence of bacterial viability and opsonization on phagosomal pH and phagosome lysosome interaction [J].
Oh, YK ;
Straubinger, RM .
INFECTION AND IMMUNITY, 1996, 64 (01) :319-325
[38]   Hyperacidification in cystic fibrosis: links with lung disease and new prospects for treatment [J].
Poschet, J ;
Perkett, E ;
Deretic, V .
TRENDS IN MOLECULAR MEDICINE, 2002, 8 (11) :512-519
[39]   Killing activity of neutrophils is mediated through activation of proteases by K+ flux [J].
Reeves, EP ;
Lu, H ;
Lortat-Jacob, H ;
Messina, CGM ;
Bolsover, S ;
Gabella, G ;
Potma, EO ;
Warley, A ;
Roes, J ;
Segal, AW .
NATURE, 2002, 416 (6878) :291-297
[40]   Immunology - Lethal weapons [J].
Roos, D ;
Winterbourn, CC .
SCIENCE, 2002, 296 (5568) :669-671