A note on stability conditions for planar switched systems

被引:59
作者
Balde, Moussa [2 ]
Boscain, Ugo [3 ]
Mason, Paolo [1 ,4 ]
机构
[1] CNR, Ist Applicaz Calcolo Mauro Picone, I-00161 Rome, Italy
[2] UCAD, Dept Math & Informat, LMDAN LGDA, Dakar, Senegal
[3] Ecole Polytech, CNRS, CMAP, F-91128 Palaiseau, France
[4] Univ Paris 11, CNRS, Signaux & Syst Lab, F-91192 Gif Sur Yvette, France
关键词
planar switched systems; asymptotic stability; quadratic Lyapunov functions; LYAPUNOV FUNCTIONS; SUFFICIENT CONDITIONS; ABSOLUTE STABILITY;
D O I
10.1080/00207170902802992
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article is concerned with the stability problem for the planar linear switched system [image omitted], where the real matrices A1, A2 2x2 are Hurwitz and u(center dot) : [0, [ {0, 1} is a measurable function. We give coordinate-invariant necessary and sufficient conditions on A1 and A2 under which the system is asymptotically stable for arbitrary switching functions u(center dot). The new conditions unify those given in previous papers and are simpler to be verified since we reduced to study 4 cases instead of 20. Most of the cases are analysed in terms of the function [image omitted].
引用
收藏
页码:1882 / 1888
页数:7
相关论文
共 10 条
[1]  
[Anonymous], SWITCHING SYSTEMS CO
[2]   Stability of planar switched systems: The nondiagonalizable case [J].
Balde, Moussa ;
Boscain, Ugo .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2008, 7 (01) :1-21
[3]   A new class of universal Lyapunov functions for the control of uncertain linear systems [J].
Blanchini, F ;
Miani, S .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (03) :641-647
[4]   Stability of planar switched systems: The linear single input case [J].
Boscain, U .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2002, 41 (01) :89-112
[5]   A converse Lyapunov theorem for a class of dynamical systems which undergo switching [J].
Dayawansa, WP ;
Martin, CF .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (04) :751-760
[6]   Necessary and sufficient conditions for absolute stability: The case of second-order systems [J].
Margaliot, M ;
Langholz, G .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 2003, 50 (02) :227-234
[7]   Common polynomial Lyapunov functions for linear switched systems [J].
Mason, P ;
Boscain, U ;
Chitour, Y .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2006, 45 (01) :226-245
[8]  
MOLCHANOV AP, 1986, AUTOMAT REM CONTR+, V47, P443
[9]  
MOLCHANOV AP, 1986, AUTOMAT REM CONTR, V47, P343
[10]  
Shorten R. N., 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251), P1410, DOI 10.1109/ACC.1999.783600