Moore-Penrose inverse method of topological variation of finite element systems

被引:12
作者
Liang, P
Chen, SH
Huang, C
机构
[1] Department of Mechanics, Jilin University of Technology
关键词
D O I
10.1016/S0045-7949(96)00180-0
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A topological modification method for structural variations of finite element system is;studied in this paper. The Moore-Penrose (M-P) inverse theory and a new factorization of a stiffness matrix are used. A set of explicit formulations of variations are obtained. Two numerical examples are given to illustrate the validity of the present method. Copyright (C) 1996 Elsevier Science Ltd.
引用
收藏
页码:243 / 251
页数:9
相关论文
共 14 条
[1]   SENSITIVITY ANALYSIS OF DISCRETE STRUCTURAL SYSTEMS [J].
ADELMAN, HM ;
HAFTKA, RT .
AIAA JOURNAL, 1986, 24 (05) :823-832
[2]  
Bathe K. J., 1976, NUMERICAL METHODS FI
[3]   GENERATING OPTIMAL TOPOLOGIES IN STRUCTURAL DESIGN USING A HOMOGENIZATION METHOD [J].
BENDSOE, MP ;
KIKUCHI, N .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1988, 71 (02) :197-224
[4]  
BENISRAEL A, 1974, GEN INVERSE THEORY A
[5]  
Chen SH., 1993, MATRIX PERTURBATION
[6]   STRUCTURAL MODIFICATION WITH FREQUENCY-RESPONSE CONSTRAINTS FOR UNDAMPED MDOF SYSTEMS [J].
CHEN, TY .
COMPUTERS & STRUCTURES, 1990, 36 (06) :1013-1018
[7]  
COX HL, 1956, DESIGN STRUCTURES LE
[8]   SINGULAR VALUE DECOMPOSITION AND MOORE-PENROSE INVERSE OF BORDERED MATRICES [J].
HARTWIG, RE .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1976, 31 (01) :31-41
[9]  
HUAG EJ, 1985, DESIGN SENSITIVITY A
[10]  
KIRSCH U, 1989, APPL MECH REV, V42, P223, DOI DOI 10.1115/1.3152429