Generalized Mechanochemical Synthesis of Biomass-Derived Sustainable Carbons for High Performance CO2 Storage

被引:147
作者
Balahmar, Norah [1 ]
Mitchell, Andrew C. [1 ]
Mokaya, Robert [1 ]
机构
[1] Univ Nottingham, Sch Chem, Nottingham NG7 2RD, England
关键词
ZEOLITE-TEMPLATED CARBONS; METAL-ORGANIC FRAMEWORKS; HIGH-SURFACE-AREA; PRESSURE SWING ADSORPTION; DOPED ACTIVATED CARBON; HYDROGEN STORAGE; DIOXIDE CAPTURE; POROUS CARBONS; MICROPOROUS CARBONS; GAS-ADSORPTION;
D O I
10.1002/aenm.201500867
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Novel mechanochemical activation generates biomass-derived carbons with unprecedented CO2 storage capacity due to higher porosity than analogous conventionally activated carbons but similar pore size. The mechanochemical activation, or so-called compactivation, process involves compression, at 740 MPa, of mixtures of activating agent (KOH) and biomass hydrochar into pellets/disks prior to thermal activation. Despite the increase in surface area and pore volume of between 25% and 75% compared to conventionally activated carbons, virtually all of the porosity of the biomass (sawdust and lignin) derived mechanochemically activated carbons is from small micropores (5.8-6.5 angstrom), which results in a dramatic increase in CO2 storage capacity at 25 degrees C and low pressure (<= 1 bar). The ambient temperature CO2 uptake for a carbon derived from sawdust at 600 degrees C and a KOH/carbon ratio of 2, rises from 1.3 to 2.0 mmol g(-1) at 0.15 bar, and from 4.3 to 5.8 mmol g(-1) at 1 bar, which is the highest ever reported for carbonaceous materials. The mechanochemically activated carbons have a superior CO2 working capacity for pressure swing adsorption and vacuum swing adsorption processes and, due to a high packing density, they exhibit excellent volumetric CO2 uptake that is higher than for any material reported to date.
引用
收藏
页数:9
相关论文
共 86 条
[1]   Compactivation: A mechanochemical approach to carbons with superior porosity and exceptional performance for hydrogen and CO2 storage [J].
Adeniran, Beatrice ;
Mokaya, Robert .
NANO ENERGY, 2015, 16 :173-185
[2]   Low temperature synthesized carbon nanotube superstructures with superior CO2 and hydrogen storage capacity [J].
Adeniran, Beatrice ;
Mokaya, Robert .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (09) :5148-5161
[3]   A family of microporous carbons prepared via a simple metal salt carbonization route with high selectivity for exceptional gravimetric and volumetric post-combustion CO2 capture [J].
Adeniran, Beatrice ;
Masika, Eric ;
Mokaya, Robert .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (35) :14696-14710
[4]   The effect of Al content of zeolite template on the properties and hydrogen storage capacity of zeolite templated carbons [J].
Alam, Nurul ;
Mokaya, Robert .
MICROPOROUS AND MESOPOROUS MATERIALS, 2011, 144 (1-3) :140-147
[5]   Characterisation and hydrogen storage of Pt-doped carbons templated by Pt-exchanged zeolite Y [J].
Alam, Nurul ;
Mokaya, Robert .
MICROPOROUS AND MESOPOROUS MATERIALS, 2011, 142 (2-3) :716-724
[6]   Evolution of optimal porosity for improved hydrogen storage in templated zeolite-like carbons [J].
Alam, Nurul ;
Mokaya, Robert .
ENERGY & ENVIRONMENTAL SCIENCE, 2010, 3 (11) :1773-1781
[7]   Porosity modulation of activated ZIF-templated carbons via compaction for hydrogen and CO2 storage applications [J].
Almasoudi, A. ;
Mokaya, R. .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (28) :10960-10968
[8]   Preparation and hydrogen storage capacity of templated and activated carbons nanocast from commercially available zeolitic imidazolate framework [J].
Almasoudi, A. ;
Mokaya, R. .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (01) :146-152
[9]   A CVD route for the preparation of templated and activated carbons for gas storage applications using zeolitic imidazolate frameworks (ZIFs) as template [J].
Almasoudi, Afaf ;
Mokaya, Robert .
MICROPOROUS AND MESOPOROUS MATERIALS, 2014, 195 :258-265
[10]   Exceptional Gas Adsorption Properties by Nitrogen-Doped Porous Carbons Derived from Benzimidazole-Linked Polymers [J].
Ashourirad, Babak ;
Sekizkardes, Ali Kemal ;
Altarawneh, Suha ;
El-Kaderi, Hani M. .
CHEMISTRY OF MATERIALS, 2015, 27 (04) :1349-1358