Matrix models for beta ensembles

被引:424
作者
Dumitriu, I [1 ]
Edelman, A [1 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
D O I
10.1063/1.1507823
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper constructs tridiagonal random matrix models for general (beta>0) beta-Hermite (Gaussian) and beta-Laguerre (Wishart) ensembles. These generalize the well-known Gaussian and Wishart models for beta=1,2,4. Furthermore, in the cases of the beta-Laguerre ensembles, we eliminate the exponent quantization present in the previously known models. We further discuss applications for the new matrix models, and present some open problems. (C) 2002 American Institute of Physics.
引用
收藏
页码:5830 / 5847
页数:18
相关论文
共 33 条
[1]   JACOBI-POLYNOMIALS ASSOCIATED WITH SELBERG INTEGRALS [J].
AOMOTO, K .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1987, 18 (02) :545-549
[2]   The Calogero-Sutherland model and generalized classical polynomials [J].
Baker, TH ;
Forrester, PJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 188 (01) :175-216
[3]  
BARSKY D, 1996, ELECTRON J COMB, V3, pR1
[4]   PROPERTIES OF HERMITE AND LAGUERRE-POLYNOMIALS IN MATRIX ARGUMENT AND THEIR APPLICATIONS [J].
CHIKUSE, Y .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1992, 176 :237-260
[5]  
Deift P., 1998, ORTHOGONAL POLYNOMIA
[6]   Distribution of the determinant of a random real-symmetric matrix from the Gaussian orthogonal ensemble [J].
Delannay, R ;
Le Caër, G .
PHYSICAL REVIEW E, 2000, 62 (02) :1526-1536
[9]  
EDELMAN A, 1989, THEIS MIT
[10]  
FORRESTER P, IN PRESS RANDOM MATR