Matrix models for beta ensembles

被引:424
作者
Dumitriu, I [1 ]
Edelman, A [1 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
D O I
10.1063/1.1507823
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper constructs tridiagonal random matrix models for general (beta>0) beta-Hermite (Gaussian) and beta-Laguerre (Wishart) ensembles. These generalize the well-known Gaussian and Wishart models for beta=1,2,4. Furthermore, in the cases of the beta-Laguerre ensembles, we eliminate the exponent quantization present in the previously known models. We further discuss applications for the new matrix models, and present some open problems. (C) 2002 American Institute of Physics.
引用
收藏
页码:5830 / 5847
页数:18
相关论文
共 33 条
[21]  
Muirhead R. J., 1982, Aspects of multivariate statistical theory.
[22]  
Odlyzko A., 2001, Contemp. Math., V290, P139
[23]  
Okounkov A, 1997, MATH RES LETT, V4, P69
[24]  
PARLETT BN, 1998, SIAM CLASSICS APPL M, P139
[25]   THE SMALLEST EIGENVALUE OF A LARGE DIMENSIONAL WISHART MATRIX [J].
SILVERSTEIN, JW .
ANNALS OF PROBABILITY, 1985, 13 (04) :1364-1368
[26]   SOME COMBINATORIAL PROPERTIES OF JACK SYMMETRIC FUNCTIONS [J].
STANLEY, RP .
ADVANCES IN MATHEMATICS, 1989, 77 (01) :76-115
[27]  
Szego G., 1975, C PUBLICATIONS, VXXIII
[28]   Correlation functions, cluster functions, and spacing distributions for random matrices [J].
Tracy, CA ;
Widom, H .
JOURNAL OF STATISTICAL PHYSICS, 1998, 92 (5-6) :809-835
[29]  
Tracy CA, 2000, CRM SER MATH PHYS, P461
[30]  
TRACY CA, 1999, STAT PHYS EVE 21 CEN, P230