Ontogeny of central rhythm generation in chicks and rodents

被引:17
作者
Chatonnet, F. [1 ]
Borday, C. [1 ]
Wrobel, L. [1 ]
Thoby-Brisson, M. [1 ]
Fortin, G. [1 ]
McLean, H. [1 ]
Champagnat, J. [1 ]
机构
[1] CNRS, Inst Fed Neurobiol Alfred Fessard, UPR 2216, F-91198 Gif Sur Yvette, France
关键词
rhyhthm; brainstem; development; embryo; rhombomeres; Hox; Krox20; chick; mouse;
D O I
10.1016/j.resp.2006.02.004
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Recent studies help in understanding how the basic organization of brainstem neuronal circuits along the anterior-posterior (AP) axis is set by the Hox-dependent segmentation of the neural tube in vertebrate embryos. Neonatal respiratory abnormalities in Krox20(-/-), Hoxal(-/-) and kreisler mutant mice indicate the vital role of a para-facial (Krox20-dependent, rhombomere 4-derived) respiratory group, that is distinct from the more caudal rhythm generator called Pre-Botzinger complex. Embryological studies in the chick suggest homology and conservation of this Krox20-dependent induction of parafacial rhythms in birds and mammals. Calcium imaging in embryo indicate that rhythm generators may derive from different cell lineages within rhombomeres. In mice, the Pre-Botzinger complex is found to be distinct from oscillators producing the earliest neuronal activity, a primordial low-frequency rhythm. In contrast, in chicks, maturation of the parafacial generator is tightly linked to the evolution of this primordial rhythm. It seems therefore that ontogeny of brainstem rhythm generation involves conserved processes specifying distinct AP domains in the neural tube, followed by diverse, lineage-specific regulations allowing the emergence of organized rhythm generators at a given AP level. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:37 / 46
页数:10
相关论文
共 72 条
  • [1] Branchiomotor activities in mouse embryo
    Abadie, V
    Champagnat, J
    Fortin, G
    [J]. NEUROREPORT, 2000, 11 (01) : 141 - 145
  • [2] Developing networks play a similar melody
    Ben-Ari, Y
    [J]. TRENDS IN NEUROSCIENCES, 2001, 24 (06) : 353 - 360
  • [3] CENTRAL CONTROL OF BREATHING IN MAMMALS - NEURONAL CIRCUITRY, MEMBRANE-PROPERTIES, AND NEUROTRANSMITTERS
    BIANCHI, AL
    DENAVITSAUBIE, M
    CHAMPAGNAT, J
    [J]. PHYSIOLOGICAL REVIEWS, 1995, 75 (01) : 1 - 45
  • [4] Developmental molecular switches regulating breathing patterns in CNS
    Borday, C
    Abadie, V
    Chatonnet, F
    Thoby-Brisson, M
    Champagnat, J
    Fortin, G
    [J]. RESPIRATORY PHYSIOLOGY & NEUROBIOLOGY, 2003, 135 (2-3) : 121 - 132
  • [5] Neural tube patterning by Krox20 and emergence of a respiratory control
    Borday, C
    Chatonnet, F
    Thoby-Brisson, M
    Champagnat, J
    Fortin, G
    [J]. RESPIRATORY PHYSIOLOGY & NEUROBIOLOGY, 2005, 149 (1-3) : 63 - 72
  • [6] BORDAY C, IN PRESS J NEUROBIOL
  • [7] A ventral pontine pathway promotes rhythmic activity in the medulla of neonate mice
    Borday, V
    Kato, F
    Champagnat, J
    [J]. NEUROREPORT, 1997, 8 (17) : 3679 - 3683
  • [8] Development of lumbar rhythmic networks: From embryonic to neonate locomotor-like patterns in the mouse
    Branchereau, P
    Morin, D
    Bonnot, A
    Ballion, B
    Chapron, J
    Viala, D
    [J]. BRAIN RESEARCH BULLETIN, 2000, 53 (05) : 711 - 718
  • [9] Different respiratory control systems are affected in homozygous and heterozygous kreisler mutant mice
    Chatonnet, F
    del Toro, ED
    Voiculescu, O
    Charnay, P
    Champagnat, J
    [J]. EUROPEAN JOURNAL OF NEUROSCIENCE, 2002, 15 (04) : 684 - 692
  • [10] From hindbrain segmentation to breathing after birth -: Developmental patterning in rhombomeres 3 and 4
    Chatonnet, F
    del Toro, ED
    Thoby-Brisson, M
    Champagnat, J
    Fortin, G
    Rijli, FM
    Thaëron-Antôno, C
    [J]. MOLECULAR NEUROBIOLOGY, 2003, 28 (03) : 277 - 293