Translating biochemical network models between different kinetic formats

被引:20
作者
Hadlich, Frieder [1 ]
Noack, Stephan [2 ]
Wiechert, Wolfgang [1 ]
机构
[1] Univ Siegen, Dept Simulat, Inst Syst Engn FB 11 12, Paul Bonatz St 9-11, D-57068 Siegen, Germany
[2] Res Ctr Julich GmbH, Inst Biotechnol, D-52428 Julich, Germany
关键词
Biochemical network modelling; Alternative kinetic formats; Model prediction; Model simplification; IN-VIVO ANALYSIS; SACCHAROMYCES-CEREVISIAE; METABOLIC DYNAMICS; SYSTEMS; SIMULATION; REDESIGN; GLUCOSE;
D O I
10.1016/j.ymben.2008.10.002
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Mechanistic biochemical network models describe the dynamics of intracellular metabolite pools in terms of substance concentrations, stoichiometry and reaction kinetics. Data from stimulus response experiments are currently the most informative source for in-vivo parameter estimation in such models. However, only a part of the parameters of classical enzyme kinetic models can usually be estimated from typical stimulus response data. For this reason, several alternative kinetic formats using different "languages'' (e. g. linear, power laws, linlog, generic and convenience) have been proposed to reduce the model complexity. The present contribution takes a rigorous "multi-lingual'' approach to data evaluation by translating biochemical network models from one kinetic format into another. For this purpose, a new high-performance algorithm has been developed and tested. Starting with a given model, it replaces as many kinetic terms as possible by alternative expressions while still reproducing the experimental data. Application of the algorithm to a published model for Escherichia coli's sugar metabolism demonstrates the power of the new method. It is shown that model translation is a powerful tool to investigate the information content of stimulus response data and the predictive power of models. Moreover, the local and global approximation capabilities of the models are elucidated and some pitfalls of traditional single model approaches to data evaluation are revealed. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:87 / 100
页数:14
相关论文
共 38 条
[11]   A general framework for large-scale model selection [J].
Haunschild, M. D. ;
Wahl, S. A. ;
Freisleben, B. ;
Wiechert, W. .
OPTIMIZATION METHODS & SOFTWARE, 2006, 21 (06) :901-917
[12]   Investigating the dynamic behavior of biochemical networks using model families [J].
Haunschild, MD ;
Freisleben, B ;
Takors, R ;
Wiechert, W .
BIOINFORMATICS, 2005, 21 (08) :1617-1625
[13]   Approximative kinetic formats used in metabolic network modeling [J].
Heijnen, JJ .
BIOTECHNOLOGY AND BIOENGINEERING, 2005, 91 (05) :534-545
[14]   The systems biology markup language (SBML):: a medium for representation and exchange of biochemical network models [J].
Hucka, M ;
Finney, A ;
Sauro, HM ;
Bolouri, H ;
Doyle, JC ;
Kitano, H ;
Arkin, AP ;
Bornstein, BJ ;
Bray, D ;
Cornish-Bowden, A ;
Cuellar, AA ;
Dronov, S ;
Gilles, ED ;
Ginkel, M ;
Gor, V ;
Goryanin, II ;
Hedley, WJ ;
Hodgman, TC ;
Hofmeyr, JH ;
Hunter, PJ ;
Juty, NS ;
Kasberger, JL ;
Kremling, A ;
Kummer, U ;
Le Novère, N ;
Loew, LM ;
Lucio, D ;
Mendes, P ;
Minch, E ;
Mjolsness, ED ;
Nakayama, Y ;
Nelson, MR ;
Nielsen, PF ;
Sakurada, T ;
Schaff, JC ;
Shapiro, BE ;
Shimizu, TS ;
Spence, HD ;
Stelling, J ;
Takahashi, K ;
Tomita, M ;
Wagner, J ;
Wang, J .
BIOINFORMATICS, 2003, 19 (04) :524-531
[15]   Control analysis of metabolic systems involving quasi-equilibrium reactions [J].
Kholodenko, BN ;
Schuster, S ;
Garcia, J ;
Westerhoff, HV ;
Cascante, M .
BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 1998, 1379 (03) :337-352
[16]  
Klipp E, 2006, THEOR BIOL MED MODEL, V3, P1
[17]   Quantitative physiological study of the fast dynamics in the intracellular pH of Saccharomyces cerevisiae in response to glucose and ethanol pulses [J].
Kresnowati, M. T. A. P. ;
Suarez-Mendez, C. M. ;
van Winden, W. A. ;
van Gulik, W. M. ;
Heijnen, J. J. .
METABOLIC ENGINEERING, 2008, 10 (01) :39-54
[18]  
Mashego MR, 2005, ROBUST EXPT METHODS
[19]   Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation [J].
Mendes, P ;
Kell, DB .
BIOINFORMATICS, 1998, 14 (10) :869-883
[20]  
Petersen S, 2004, METABOLIC ENGINEERING IN THE POST GENOMIC ERA, P237