Potential of AlN Nanostructures as Hydrogen Storage Materials

被引:212
作者
Wang, Qian [3 ]
Sun, Qiang [1 ,2 ,3 ]
Jena, Puru [3 ]
Kawazoe, Yoshiyuki [4 ]
机构
[1] Peking Univ, Dept Adv Mat & Nanotechnol, Beijing 100871, Peoples R China
[2] Peking Univ, Ctr Appl Phys & Technol, Beijing 100871, Peoples R China
[3] Virginia Commonwealth Univ, Dept Phys, Richmond, VA 23284 USA
[4] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan
基金
中国国家自然科学基金;
关键词
hydrogen storage; nanostructure with exposed metal sites; cage; tube; cone; wire; MOLECULAR-HYDROGEN; ALUMINUM; GAS;
D O I
10.1021/nn800815e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The capability of AlN nanostructures (nanocages, nanocones, nanotubes, and nanowires) to store hydrogen has been studied using gradient-corrected density functional theory. In contrast to bulk AlN, which has the wurtzite structure and four-fold coordination, the Al sites in AlN nanostructures are unsaturated and have two- and three-fold coordination. Each Al atom is capable of binding one H-2 molecule in quasi-molecular form, leading to 4.7 wt % hydrogen, irrespective of the topology of the nanostructures. With the exception of AlN nanotubes, energetics does not support the adsorption of additional hydrogen. The binding energies of hydrogen to these unsaturated metal sites lie in the range of 0.1-0.2 eV/H-2 and are ideal for applications under ambient thermodynamic conditions. Furthermore, these materials do not suffer from the clustering problem that often plagues metal-coated carbon nanostructures.
引用
收藏
页码:621 / 626
页数:6
相关论文
共 36 条
[1]  
ALEFELD G, 1978, TOP APPL PHYS, V29, P1
[2]   Synthesis of nanowires and nanoparticles of cubic aluminium nitride [J].
Balasubramanian, C ;
Godbole, VP ;
Rohatgi, VK ;
Das, AK ;
Bhoraskar, SV .
NANOTECHNOLOGY, 2004, 15 (03) :370-373
[3]   Scanning tunneling microscopy observation of coiled aluminum nitride nanotubes [J].
Balasubramanian, C ;
Bellucci, S ;
Castrucci, P ;
De Crescenzi, M ;
Bhoraskar, SV .
CHEMICAL PHYSICS LETTERS, 2004, 383 (1-2) :188-191
[4]   Optimum conditions for adsorptive storage [J].
Bhatia, SK ;
Myers, AL .
LANGMUIR, 2006, 22 (04) :1688-1700
[5]   Evolution of the properties of AlnNn clusters with size [J].
Costales, A ;
Blanco, MA ;
Francisco, E ;
Pandey, R ;
Pendás, AM .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (51) :24352-24360
[6]   Hydrogen storage in microporous metal-organic frameworks with exposed metal sites [J].
Dinca, Mircea ;
Long, Jeffrey R. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (36) :6766-6779
[7]   Molecular modeling study of hydrogen storage in carbon nanotubes [J].
Dodziuk, H ;
Dolgonos, G .
CHEMICAL PHYSICS LETTERS, 2002, 356 (1-2) :79-83
[8]   Nanotechnological aspects in materials for hydrogen storage [J].
Fichtner, M .
ADVANCED ENGINEERING MATERIALS, 2005, 7 (06) :443-455
[9]   Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen [J].
Grochala, W ;
Edwards, PP .
CHEMICAL REVIEWS, 2004, 104 (03) :1283-1315
[10]   Hydrogen storage capacity of commercially available carbon materials at room temperature [J].
Kajiura, H ;
Tsutsui, S ;
Kadono, K ;
Kakuta, M ;
Ata, M ;
Murakami, Y .
APPLIED PHYSICS LETTERS, 2003, 82 (07) :1105-1107