Characterization of magnetite nanoparticles for SQUID-relaxometry and magnetic needle biopsy

被引:35
作者
Adolphi, Natalie L. [1 ]
Huber, Dale L. [2 ]
Jaetao, Jason E. [3 ]
Bryant, Howard C. [1 ]
Lovato, Debbie M. [3 ]
Fegan, Danielle L. [1 ]
Venturini, Eugene L. [2 ]
Monson, Todd C. [2 ]
Tessier, Trace E. [1 ]
Hathaway, Helen J. [4 ]
Bergemann, Christian [5 ]
Larson, Richard S. [3 ]
Flynn, Edward R. [1 ]
机构
[1] Senior Sci LLC, Albuquerque, NM 87111 USA
[2] Sandia Natl Labs, Albuquerque, NM 87185 USA
[3] Univ New Mexico, Dept Pathol, Canc Res & Treatment Ctr, Albuquerque, NM 87131 USA
[4] Univ New Mexico, Dept Cell Biol & Physiol, Albuquerque, NM 87131 USA
[5] Chemicell GmbH, D-12103 Berlin, Germany
关键词
Magnetite; Nanoparticle; Magnetorelaxometry; SQUID detection; Susceptometry; Antibody-conjugation; MAGNETORELAXOMETRY; RELAXATION; SYSTEMS;
D O I
10.1016/j.jmmm.2009.02.067
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Magnetite nanoparticles(Chemicell SiMAG-TCL) were characterized by SQUID-relaxometry, susceptometry, and TEM. The magnetization detected by SQUID-relaxometry was 0.33% of that detected by susceptometry, indicating that the sensitivity of SQUID-relaxometry could be significantly increased through improved control of nanoparticle size. The relaxometry data were analyzed by the moment superposition model(MSM) to determine the distribution of nanoparticle moments. Analysis of the binding of CD34-conjugated nanoparticles to U937 leukemia cells revealed 60,000 nanoparticles per cell, which were collected from whole blood using a prototype magnetic biopsy needle, with a capture efficiency of >65% from a 750 mu l sample volume in 1 min. (c) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1459 / 1464
页数:6
相关论文
共 18 条
[1]  
[Anonymous], 2000, E39400 ASTM
[2]  
Basso G, 2001, J BIOL REG HOMEOS AG, V15, P68
[3]   Magnetic needles and superparamagnetic cells [J].
Bryant, H. C. ;
Sergatskov, D. A. ;
Lovato, Debbie ;
Adolphi, Natalie L. ;
Larson, Richard S. ;
Flynn, Edward R. .
PHYSICS IN MEDICINE AND BIOLOGY, 2007, 52 (14) :4009-4025
[4]   TIME-DEPENDENT MAGNETIZATION IN FINE-PARTICLE FERROMAGNETIC SYSTEMS [J].
CHANTRELL, RW ;
HOON, SR ;
TANNER, BK .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1983, 38 (02) :133-141
[5]   Ultrasensitive magnetic biosensor for homogeneous immunoassay [J].
Chemla, YR ;
Crossman, HL ;
Poon, Y ;
McDermott, R ;
Stevens, R ;
Alper, MD ;
Clarke, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (26) :14268-14272
[6]   Biological sensors based on Brownian relaxation of magnetic nanoparticles [J].
Chung, SH ;
Hoffmann, A ;
Bader, SD ;
Liu, C ;
Kay, B ;
Makowski, L ;
Chen, L .
APPLIED PHYSICS LETTERS, 2004, 85 (14) :2971-2973
[7]   Aggregation behaviour of magnetic nanoparticle suspensions investigated by magnetorelaxometry [J].
Eberbeck, D. ;
Wiekhorst, F. ;
Steinhoff, U. ;
Trahms, L. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2006, 18 (38) :S2829-S2846
[8]  
Eberbeck D., 2003, MAGNETOHYDRODYNAMICS, V39, P77
[9]   Properties of magnetic nanoparticles in the Brownian relaxation range for liquid phase immunoassays [J].
Enpuku, K. ;
Tanaka, T. ;
Matsuda, T. ;
Dang, F. ;
Enomoto, N. ;
Hojo, J. ;
Yoshinaga, K. ;
Ludwig, F. ;
Ghaffari, F. ;
Heim, E. ;
Schilling, M. .
JOURNAL OF APPLIED PHYSICS, 2007, 102 (05)
[10]   A biomagnetic system for in vivo cancer imaging [J].
Flynn, ER ;
Bryant, HC .
PHYSICS IN MEDICINE AND BIOLOGY, 2005, 50 (06) :1273-1293