Properties of magnetic nanoparticles in the Brownian relaxation range for liquid phase immunoassays

被引:38
作者
Enpuku, K. [1 ]
Tanaka, T.
Matsuda, T.
Dang, F.
Enomoto, N.
Hojo, J.
Yoshinaga, K.
Ludwig, F.
Ghaffari, F.
Heim, E.
Schilling, M.
机构
[1] Kyushu Univ, Res Inst Superconductor Sci & Syst, Fukuoka 8190395, Japan
[2] Kyushu Univ, Dept Appl Chem, Fukuoka 8190395, Japan
[3] Kyushu Inst Technol, Dept Appl Chem, Kitakyushu, Fukuoka 8048550, Japan
[4] TU Braunschweig, Inst Elect Measurement & Fundamental Elect Engn, D-38106 Braunschweig, Germany
关键词
MAGNETORELAXOMETRY;
D O I
10.1063/1.2775882
中图分类号
O59 [应用物理学];
学科分类号
摘要
Properties of magnetic nanoparticles in the Brownian relaxation region were studied. Using the magnetic nanoparticles that exhibit remanence, we measured the magnetic properties, such as static magnetization, magnetic relaxation, and alternating current susceptibility, in a solution. Comprehensive comparisons were made between the experimental results and the theoretical ones predicted from the Brownian relaxation. From the comparison, the distributions of the particle parameters, i.e., the magnetic moment and the relaxation time, were estimated. It was shown that all the magnetic properties can be well explained when we take into account the parameter distributions in the sample. (c) 2007 American Institute of Physics.
引用
收藏
页数:7
相关论文
共 21 条
[1]   Biomolecular reactions studied using changes in Brownian rotation dynamics of magnetic particles [J].
Astalan, AP ;
Ahrentorp, F ;
Johansson, C ;
Larsson, K ;
Krozer, A .
BIOSENSORS & BIOELECTRONICS, 2004, 19 (08) :945-951
[2]   Brownian magnetic relaxation of water-based cobalt nanoparticle ferrofluids [J].
Bao, Y. ;
Pakhomov, A. B. ;
Krishnan, Kannan M. .
JOURNAL OF APPLIED PHYSICS, 2006, 99 (08)
[3]   New method for the determination of the particle magnetic moment distribution in a ferrofluid [J].
Berkov, DV ;
Görnert, P ;
Buske, N ;
Gansau, C ;
Mueller, J ;
Giersig, M ;
Neumann, W ;
Su, D .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2000, 33 (04) :331-337
[4]   Biological sensing with magnetic nanoparticles using Brownian relaxation (invited) [J].
Chung, SH ;
Hoffmann, A ;
Guslienko, K ;
Bader, SD ;
Liu, C ;
Kay, B ;
Makowski, L ;
Chen, L .
JOURNAL OF APPLIED PHYSICS, 2005, 97 (10)
[5]   Binding kinetics of magnetic nanoparticles on latex beads and yeast cells studied by magnetorelaxometry [J].
Eberbeck, D ;
Bergemann, C ;
Hartwig, S ;
Steinhoff, U ;
Trahms, L .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2005, 289 :435-438
[6]   Measuring the transverse magnetization of rotating ferrofluids [J].
Embs, JP ;
May, S ;
Wagner, C ;
Kityk, AV ;
Leschhorn, A ;
Lücke, M .
PHYSICAL REVIEW E, 2006, 73 (03) :1-8
[7]   Sonochemical powder processing of iron hydroxides [J].
Enomoto, N ;
Akagi, J ;
Nakagawa, Z .
ULTRASONICS SONOCHEMISTRY, 1996, 3 (02) :S97-S103
[8]   Liquid phase immunoassay utilizing magnetic marker and high Tc superconducting quantum interference device [J].
Enpuku, K. ;
Soejima, K. ;
Nishimoto, T. ;
Tokumitsu, H. ;
Kuma, H. ;
Hamasaki, N. ;
Yoshinaga, K. .
JOURNAL OF APPLIED PHYSICS, 2006, 100 (05)
[9]   Magnetic immunoassays utilizing magnetic markers and a high-TC SQUID [J].
Enpuku, K ;
Inoue, K ;
Soejima, K ;
Yoshinaga, K ;
Kuma, H ;
Hamasaki, N .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2005, 15 (02) :660-663
[10]   High Tc SQUID system and magnetic marker for biological immunoassays [J].
Enpuku, K ;
Kuroda, D ;
Yang, TQ ;
Yoshinaga, K .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2003, 13 (02) :371-376