PPI spider: A tool for the interpretation of proteomics data in the context of protein-protein interaction networks

被引:57
作者
Antonov, Alexey V. [1 ]
Dietmann, Sabine [1 ]
Rodchenkov, Igor [1 ]
Mewes, Hans W. [1 ,2 ]
机构
[1] GSF, Natl Res Ctr Environm & Hlth, Inst Bioinformat, D-85764 Neuherberg, Germany
[2] Tech Univ Munich, Wissenschaftszentrum Weihenstephan, Dept Genome Oriented Bioinformat, D-8050 Freising Weihenstephan, Germany
关键词
Enrichment analyses; Inference of molecular mechanisms that are relevant to a given protein list; Protein-protein interaction networks; LIQUID-CHROMATOGRAPHY; NATIONAL-CENTER; EXPRESSION; RESOURCES; CLASSIFICATION; PHENOTYPE; CELLS; LISTS;
D O I
10.1002/pmic.200800612
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Recent advances in experimental technologies allow for the detection of a complete cell proteome. Proteins that are expressed at a particular cell state or in a particular compartment as well as proteins with differential expression between various cells states are commonly delivered by many proteomics studies. Once a list of proteins is derived, a major challenge is to interpret the identified set of proteins in the biological context. Protein-protein interaction (PPI) data represents abundant information that can be employed for this purpose. However, these data have not yet been fully exploited due to the absence of a methodological framework that can integrate this type of information. Here, we propose to infer a network model from an experimentally identified protein list based on the available information about the topology of the global PPI network. We propose to use a Monte Carlo simulation procedure to compute the statistical significance of the inferred models. The method has been implemented as a freely available web-based tool, PPI spider (http://mips.helmholtz-muenchen.de/proj/ppispider). To support the practical significance of PPI spider, we collected several hundreds of recently published experimental proteomics studies that reported lists of proteins in various biological contexts. We reanalyzed them using PPI spider and demonstrated that in most cases PPI spider could provide statistically significant hypotheses that are helpful for understanding of the protein list.
引用
收藏
页码:2740 / 2749
页数:10
相关论文
共 48 条
  • [1] [Anonymous], 1993, Resampling-Based Multiple Testing: Examples and Methods for p-Value Adjustment
  • [2] Complex functionality of gene groups identified from high-throughput data
    Antonov, Alexey V.
    Mewes, Hans W.
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 2006, 363 (01) : 289 - 296
  • [3] Complex phylogenetic profiling reveals fundamental genotype-phenotype associations
    Antonov, Alexey V.
    Mewes, Hans W.
    [J]. COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2008, 32 (06) : 412 - 416
  • [4] A systematic approach to infer biological relevance and biases of gene network structures
    Antonov, AV
    Tetko, IV
    Mewes, HW
    [J]. NUCLEIC ACIDS RESEARCH, 2006, 34 (01) : e6
  • [5] ANTONOV AV, 2006, NUCLEIC ACIDS RES, V36, pW347
  • [6] The InterPro database, an integrated documentation resource for protein families, domains and functional sites
    Apweiler, R
    Attwood, TK
    Bairoch, A
    Bateman, A
    Birney, E
    Biswas, M
    Bucher, P
    Cerutti, T
    Corpet, F
    Croning, MDR
    Durbin, R
    Falquet, L
    Fleischmann, W
    Gouzy, J
    Hermjakob, H
    Hulo, N
    Jonassen, I
    Kahn, D
    Kanapin, A
    Karavidopoulou, Y
    Lopez, R
    Marx, B
    Mulder, NJ
    Oinn, TM
    Pagni, M
    Servant, F
    Sigrist, CJA
    Zdobnov, EM
    [J]. NUCLEIC ACIDS RESEARCH, 2001, 29 (01) : 37 - 40
  • [7] Gene Ontology: tool for the unification of biology
    Ashburner, M
    Ball, CA
    Blake, JA
    Botstein, D
    Butler, H
    Cherry, JM
    Davis, AP
    Dolinski, K
    Dwight, SS
    Eppig, JT
    Harris, MA
    Hill, DP
    Issel-Tarver, L
    Kasarskis, A
    Lewis, S
    Matese, JC
    Richardson, JE
    Ringwald, M
    Rubin, GM
    Sherlock, G
    [J]. NATURE GENETICS, 2000, 25 (01) : 25 - 29
  • [8] Genes2Networks: connecting lists of gene symbols using mammalian protein interactions databases
    Berger, Seth I.
    Posner, Jeremy M.
    Ma'ayan, Avi
    [J]. BMC BIOINFORMATICS, 2007, 8 (1)
  • [9] Characterizing gene sets with FuncAssociate
    Berriz, GF
    King, OD
    Bryant, B
    Sander, C
    Roth, FP
    [J]. BIOINFORMATICS, 2003, 19 (18) : 2502 - 2504
  • [10] Ensembl 2006
    Birney, E.
    Andrews, D.
    Caccamo, M.
    Chen, Y.
    Clarke, L.
    Coates, G.
    Cox, T.
    Cunningham, F.
    Curwen, V.
    Cutts, T.
    Down, T.
    Durbin, R.
    Fernandez-Suarez, X. M.
    Flicek, P.
    Graf, S.
    Hammond, M.
    Herrero, J.
    Howe, K.
    Iyer, V.
    Jekosch, K.
    Kahari, A.
    Kasprzyk, A.
    Keefe, D.
    Kokocinski, F.
    Kulesha, E.
    London, D.
    Longden, I.
    Melsopp, C.
    Meidl, P.
    Overduin, B.
    Parker, A.
    Proctor, G.
    Prlic, A.
    Rae, M.
    Rios, D.
    Redmond, S.
    Schuster, M.
    Sealy, I.
    Searle, S.
    Severin, J.
    Slater, G.
    Smedley, D.
    Smith, J.
    Stabenau, A.
    Stalker, J.
    Trevanion, S.
    Ureta-Vidal, A.
    Vogel, J.
    White, S.
    Woodwark, C.
    [J]. NUCLEIC ACIDS RESEARCH, 2006, 34 : D556 - D561