RNAi, DRD1, and histone methylation actively target developmentally important non-CG DNA methylation in Arabidopsis

被引:177
作者
Chan, Simon W. -L.
Henderson, Ian R.
Zhang, Xiaoyu
Shah, Govind
Chien, Jason S. -C.
Jacobsen, Steven E. [1 ]
机构
[1] Univ Calif Los Angeles, Dept Mol Cell & Dev Biol, Los Angeles, CA USA
[2] Univ Calif Los Angeles, Howard Hughes Med Inst, Los Angeles, CA USA
来源
PLOS GENETICS | 2006年 / 2卷 / 06期
关键词
D O I
10.1371/journal.pgen.0020083
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Cytosine DNA methylation protects eukaryotic genomes by silencing transposons and harmful DNAs, but also regulates gene expression during normal development. Loss of CG methylation in the Arabidopsis thaliana met1 and ddm1 mutants causes varied and stochastic developmental defects that are often inherited independently of the original met1 or ddm1 mutation. Loss of non-CG methylation in plants with combined mutations in the DRM and CMT3 genes also causes a suite of developmental defects. We show here that the pleiotropic developmental defects of drm1 drm2 cmt3 triple mutant plants are fully recessive, and unlike phenotypes caused by met1 and ddm1, are not inherited independently of the drm and cmt3 mutations. Developmental phenotypes are also reversed when drm1 drm2 cmt3 plants are transformed with DRM2 or CMT3, implying that non-CG DNA methylation is efficiently re-established by sequence-specific signals. We provide evidence that these signals include RNA silencing though the 24-nucleotide short interfering RNA (siRNA) pathway as well as histone H3K9 methylation, both of which converge on the putative chromatin-remodeling protein DRD1. These signals act in at least three partially intersecting pathways that control the locus-specific patterning of non-CG methylation by the DRM2 and CMT3 methyltransferases. Our results suggest that non-CG DNA methylation that is inherited via a network of persistent targeting signals has been co-opted to regulate developmentally important genes.
引用
收藏
页码:791 / 797
页数:7
相关论文
共 31 条
  • [1] RNA-directed DNA methylation in Arabidopsis
    Aufsatz, W
    Mette, MF
    van der Winden, J
    Matzke, AJM
    Matzke, M
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 : 16499 - 16506
  • [2] Arabidopsis cmt3 chromomethylase mutations block non-CG methylation and silencing of an endogenous gene
    Bartee, L
    Malagnac, F
    Bender, J
    [J]. GENES & DEVELOPMENT, 2001, 15 (14) : 1753 - 1758
  • [3] Role of the Arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing
    Cao, XF
    Jacobsen, SE
    [J]. CURRENT BIOLOGY, 2002, 12 (13) : 1138 - 1144
  • [4] Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes
    Cao, XF
    Jacobsen, SE
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 : 16491 - 16498
  • [5] Conserved plant genes with similarity to mammalian de novo DNA methyltransferases
    Cao, XF
    Springer, NM
    Muszynski, MG
    Phillips, RL
    Kaeppler, S
    Jacobsen, SE
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (09) : 4979 - 4984
  • [6] Role of the DRM and CMT3 Methyltransferases in RNA-directed DNA methylation
    Cao, XF
    Aufsatz, W
    Zilberman, D
    Mette, MF
    Huang, MS
    Matzke, M
    Jacobsen, SE
    [J]. CURRENT BIOLOGY, 2003, 13 (24) : 2212 - 2217
  • [7] Gardening the genome:: DNA methylation in Arabidopsis thaliana
    Chan, SWL
    Henderson, IR
    Jacobsen, SE
    [J]. NATURE REVIEWS GENETICS, 2005, 6 (05) : 351 - 360
  • [8] RNA silencing genes control de novo DNA methylation
    Chan, SWL
    Zilberman, D
    Xie, ZX
    Johansen, LK
    Carrington, JC
    Jacobsen, SE
    [J]. SCIENCE, 2004, 303 (5662) : 1336 - 1336
  • [9] Comfort N. C., 2001, The tangled field: Barbara McClintock's search for the patterns of genetic control
  • [10] An RNA-Dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus
    Dalmay, T
    Hamilton, A
    Rudd, S
    Angell, S
    Baulcombe, DC
    [J]. CELL, 2000, 101 (05) : 543 - 553