A massively parallel multigrid method for finite elements

被引:56
作者
Bergen, Benjamin
Gradl, Tobias
Ruede, Ulrich
Huelsemann, Frank
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[2] Univ Erlangen Nurnberg, D-8520 Erlangen, Germany
关键词
D O I
10.1109/MCSE.2006.102
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The hierarchical hybrid grid framework supports the parallel implementation of multigrid solvers for finite element problems. Specifically, it generates extremely fine meshes by using a structured refinement of an unstructured base mesh. For special problems with piecewise uniform material parameters, this leads to the possibility of using stencil-based operations, which permit a very efficient implementation of the multigrid method.
引用
收藏
页码:56 / 62
页数:7
相关论文
共 9 条
[1]  
Barrett R., 1994, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, V2nd ed.
[2]   Multigrid methods on adaptively refined grids [J].
Bastian, Peter ;
Wieners, Christian .
COMPUTING IN SCIENCE & ENGINEERING, 2006, 8 (06) :44-54
[3]  
BERGEN B, 2006, SCS
[4]  
BERGEN B, 2005, P 2005 ACM IEEE C SU
[5]   Tetrahedral grid refinement [J].
Bey, J .
COMPUTING, 1995, 55 (04) :355-378
[6]   An introduction to algebraic multigrid [J].
Falgout, Robert D. .
COMPUTING IN SCIENCE & ENGINEERING, 2006, 8 (06) :24-33
[7]  
Hulsemann F., 2006, Numerical Solution of Partial Differential Equations on Parallel Computers, P165, DOI DOI 10.1007/3-540-31619-1_5
[8]   Multilevel k-way partitioning scheme for irregular graphs [J].
Karypis, G ;
Kumar, V .
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 1998, 48 (01) :96-129
[9]   Why multigrid methods are so efficient [J].
Yavneh, Irad .
COMPUTING IN SCIENCE & ENGINEERING, 2006, 8 (06) :12-22