Dynamics of memory representations in networks with novelty-facilitated synaptic plasticity

被引:64
作者
Blumenfeld, Barak [1 ]
Preminger, Son [1 ]
Sagi, Dov [1 ]
Tsodyks, Misha [1 ]
机构
[1] Weizmann Inst Sci, Dept Neurobiol, IL-76100 Rehovot, Israel
关键词
D O I
10.1016/j.neuron.2006.08.016
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The ability to associate some stimuli while differentiating between others is an essential characteristic of biological memory. Theoretical models identify memories as attractors of neural network activity, with learning based on Hebb-like synaptic modifications. Our analysis shows that when network inputs are correlated, this mechanism results in overassociations, even up to several memories "merging" into one. To counteract this tendency, we introduce a learning mechanism that involves novelty-facilitated modifications, accentuating synaptic changes proportionally to the difference between network input and stored memories. This mechanism introduces a dependency of synaptic modifications on previously acquired memories, enabling a wide spectrum of memory associations, ranging from absolute discrimination to complete merging. The model predicts that memory representations should be sensitive to learning order, consistent with recent psychophysical studies of face recognition and electrophysiological experiments on hippocampal place cells. The proposed mechanism is compatible with a recent biological model of novelty-facilitated learning in hippocampal circuitry.
引用
收藏
页码:383 / 394
页数:12
相关论文
共 46 条
[1]   Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex [J].
Amit, DJ ;
Brunel, N .
CEREBRAL CORTEX, 1997, 7 (03) :237-252
[2]   SPIN-GLASS MODELS OF NEURAL NETWORKS [J].
AMIT, DJ ;
GUTFREUND, H .
PHYSICAL REVIEW A, 1985, 32 (02) :1007-1018
[3]   STORING INFINITE NUMBERS OF PATTERNS IN A SPIN-GLASS MODEL OF NEURAL NETWORKS [J].
AMIT, DJ ;
GUTFREUND, H ;
SOMPOLINSKY, H .
PHYSICAL REVIEW LETTERS, 1985, 55 (14) :1530-1533
[4]  
AMIT DJ, 1995, BEHAV BRAIN SCI, V18, P617, DOI 10.1017/S0140525X00040164
[5]  
[Anonymous], 2005, METHODS MODELS NEURO
[6]  
[Anonymous], 1990, MATERIALS
[7]  
Bear Mark F., 1994, Current Opinion in Neurobiology, V4, P389, DOI 10.1016/0959-4388(94)90101-5
[8]   THEORY OF ORIENTATION TUNING IN VISUAL-CORTEX [J].
BENYISHAI, R ;
BAROR, RL ;
SOMPOLINSKY, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (09) :3844-3848
[9]   LONG-LASTING POTENTIATION OF SYNAPTIC TRANSMISSION IN DENTATE AREA OF ANESTHETIZED RABBIT FOLLOWING STIMULATION OF PERFORANT PATH [J].
BLISS, TVP ;
LOMO, T .
JOURNAL OF PHYSIOLOGY-LONDON, 1973, 232 (02) :331-356
[10]   Neural network model of the primary visual cortex: From functional architecture to lateral connectivity and back [J].
Blumenfeld, Barak ;
Bibitchkov, Dmitri ;
Tsodyks, Misha .
JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2006, 20 (02) :219-241