Convergence to steady states of solutions of the Cahn-Hilliard and Caginalp equations with dynamic boundary conditions

被引:109
作者
Chill, Ralph
Fasangova, Eva
Pruess, Jan
机构
[1] Univ Ulm, Abt Angiol Anal, D-89069 Ulm, Germany
[2] Charles Univ, Dept Math Anal, Prague 18675 8, Czech Republic
[3] Univ Halle Wittenberg, Fach Math & Informat, D-06120 Halle, Germany
关键词
Cahn-Hilliard equation; Caginalp problem; convergence to steady states; Lojasiewicz-Simon inequality;
D O I
10.1002/mana.200410431
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a solution of the Cahn-Hilliard equation or an associated Caginalp problem with dynamic boundary condition in the case of a general potential and prove that under some conditions on the potential it converges, as t --> infinity, to a stationary solution. The main tool will be the Lojasiewicz-Simon inequality for the underlying energy functional. (C) 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:1448 / 1462
页数:15
相关论文
共 22 条
[1]   SPECTRAL COMPARISON PRINCIPLES FOR THE CAHN-HILLIARD AND PHASE-FIELD EQUATIONS, AND TIME SCALES FOR COARSENING [J].
BATES, PW ;
FIFE, PC .
PHYSICA D-NONLINEAR PHENOMENA, 1990, 43 (2-3) :335-348
[2]  
CAGINALP G, 1986, ARCH RATION MECH AN, V92, P205
[3]   FREE ENERGY OF A NONUNIFORM SYSTEM .1. INTERFACIAL FREE ENERGY [J].
CAHN, JW ;
HILLIARD, JE .
JOURNAL OF CHEMICAL PHYSICS, 1958, 28 (02) :258-267
[4]   On the Lojasiewicz-Simon gradient inequality [J].
Chill, R .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 201 (02) :572-601
[5]  
Denk R, 2003, MEM AM MATH SOC, V166, P1
[6]  
DENK R, 2003, OPTIMAL LP LQ REGULA
[7]  
Elliott C. M., 1989, Math. Models Phase Change Probl, P35, DOI DOI 10.1007/978-3-0348-9148-6_3
[8]  
ELLIOTT CM, 1986, ARCH RATION MECH AN, V96, P339
[9]   Exponential stability for a mirror-symmetric three phase boundary motion by surface diffusion [J].
Escher, J ;
Garcke, H ;
Ito, K .
MATHEMATISCHE NACHRICHTEN, 2003, 257 :3-15
[10]   Phase separation in confined geometries: Solving the Cahn-Hilliard equation with generic boundary conditions [J].
Kenzler, R ;
Eurich, F ;
Maass, P ;
Rinn, B ;
Schropp, J ;
Bohl, E ;
Dieterich, W .
COMPUTER PHYSICS COMMUNICATIONS, 2001, 133 (2-3) :139-157