On the Lojasiewicz-Simon gradient inequality

被引:115
作者
Chill, R [1 ]
机构
[1] Univ Ulm, Abt Angew Anal, D-89069 Ulm, Germany
关键词
Lojasiewicz-Simon inequality; asymptotic behaviour; convergence to equilibrium; gradient-like evolution equation; semilinear diffusion equation; semilinear wave equation; Cahn-Hilliard equation; Kirchhoff-Carrier equation; quasilinear equation;
D O I
10.1016/S0022-1236(02)00102-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a general version of the Lojasiewicz-Simon inequality, and we show how to apply the abstract result to study energy functionals E of the form E(nu) = 1/2a(nu, nu) + integral(Omega) F(x, nu), defined on a Hilbert space V --> L-2 (Omega). We show that in some cases it is possible to prove the Lojasiewicz-Simon inequality for such functionals without the assumption of analyticity. The results apply to study the asymptotic behaviour of parabolic and hyperbolic evolution equations. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:572 / 601
页数:30
相关论文
共 35 条
[1]  
AULBACH B, 1984, LECT NOTES MATH, V1058, pU1
[2]   Long-time vanishing properties of solutions of some semilinear parabolic equations [J].
Belaud, Y ;
Helffer, B ;
Véron, L .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2001, 18 (01) :43-68
[3]  
Brunovsky P, 1997, Z ANGEW MATH PHYS, V48, P976
[4]  
CHILL R, 2003, IN PRESS NONLINEAR A
[5]   Robin boundary value problems on arbitrary domains [J].
Daners, D .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (09) :4207-4236
[6]  
DAUTRAY R, 1988, ANAL MATH CALCUL NUM, V6
[7]   Long-time stabilization of solutions to the Ginzburg-Landau equations of superconductivity [J].
Feireisl, E ;
Takác, P .
MONATSHEFTE FUR MATHEMATIK, 2001, 133 (03) :197-221
[8]  
Feiresl E., 2000, J. Dynam. Differential Equations, V12, P647
[9]   CONVERGENCE IN GRADIENT-LIKE SYSTEMS WITH APPLICATIONS TO PDE [J].
HALE, JK ;
RAUGEL, G .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1992, 43 (01) :63-124
[10]   Convergence of bounded weak solutions of the wave equation with dissipation and analytic nonlinearity [J].
Haraux, A ;
Jendoubi, MA .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1999, 9 (02) :95-124