Near-infrared fluorescence imaging of tumor integrin αvβ3 expression with Cy7-labeled RGD multimers

被引:96
作者
Wu, Yun
Cai, Weibo
Chen, Xiaoyuan
机构
[1] Stanford Univ, Sch Med, Mol Imaging Program Stanford, Dept Radiol, Stanford, CA 94305 USA
[2] Stanford Univ, Sch Med, BioX Program, Stanford, CA 94305 USA
关键词
near-infrared fluorescence imaging; Cy7; integrin alpha(v)beta(3); RGD peptide; polyvalency;
D O I
10.1007/s11307-006-0041-8
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: Cell adhesion molecule integrin alpha(v)beta(3) is an excellent target for tumor interventions because of its unique expression on the surface of several types of solid tumor cells and on almost all sprouting tumor vasculatures. Here, we describe the development of near-infrared (NIR) fluorochrome Cy7-labeled RGD peptides for tumor integrin targeting. Procedures: Mono-, di-, and tetrameric RGD peptides were synthesized and conjugated with Cy7. The integrin specificity of these fluorescent probes was tested in vitro for receptor binding assay and fluorescence microscopy and in vivo for subcutaneous U87MG tumor targeting. Results: The tetrameric RGD peptide probe with the highest integrin affinity showed the highest tumor activity accumulation and strongest tumor-to-normal tissue contrast. This uptake is integrin-specific as the signal accumulated in the tumor can be effectively blocked by unconjugated RGD peptide antagonist of integrin alpha(v)beta(3). Conclusions: Noninvasive NIR fluorescence imaging is able to detect and semiquantify tumor integrin expression based upon the highly potent tetrameric RGD peptide probe.
引用
收藏
页码:226 / 236
页数:11
相关论文
共 43 条
[31]   ARG-GLY-ASP PEPTIDE INCREASES ENDOTHELIAL HYDRAULIC CONDUCTIVITY - COMPARISON WITH THROMBIN RESPONSE [J].
QIAO, RL ;
YAN, WH ;
LUM, H ;
MALIK, AB .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 1995, 269 (01) :C110-C117
[32]   A trivalent system from vancomycin•D-Ala-D-Ala with higher affinity than avidin•biotin [J].
Rao, JH ;
Lahiri, J ;
Isaacs, L ;
Weis, RM ;
Whitesides, GM .
SCIENCE, 1998, 280 (5364) :708-711
[33]  
Reynolds JS, 1999, PHOTOCHEM PHOTOBIOL, V70, P87, DOI 10.1111/j.1751-1097.1999.tb01953.x
[34]   RGD and other recognition sequences for integrins [J].
Ruoslahti, E .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1996, 12 :697-715
[35]   Molecular MR imaging of melanoma angiogenesis with ανβ3-targeted paramagnetic nanoparticles [J].
Schmieder, AH ;
Winter, PM ;
Caruthers, SD ;
Harris, TD ;
Williams, TA ;
Allen, JS ;
Lacy, EK ;
Zhang, HY ;
Scott, MJ ;
Hu, G ;
Robertson, JD ;
Wickline, SA ;
Lanza, GM .
MAGNETIC RESONANCE IN MEDICINE, 2005, 53 (03) :621-627
[36]   Detection of tumor angiogenesis in vivo by αvβ3-targeted magnetic resonance imaging [J].
Sipkins, DA ;
Cheresh, DA ;
Kazemi, MR ;
Nevin, LM ;
Bednarski, MD ;
Li, KCP .
NATURE MEDICINE, 1998, 4 (05) :623-626
[37]  
SUNKUK K, 2005, MOL IMAGING, V4, P75
[38]   Novel targeting strategy based on multimeric ligands for drug delivery and molecular imaging:: homooligomers of α-MSH [J].
Vagner, J ;
Handl, HL ;
Gillies, RJ ;
Hruby, VJ .
BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2004, 14 (01) :211-215
[39]   Near-Infrared Optical Imaging of Integing αvβ3 in Human Tumor Xenografts [J].
Wang, Wei ;
Ke, Shi ;
Wu, Qingping ;
Charnsangavej, Chusilp ;
Gurfinkel, Mikhail ;
Gelovani, Juri G. ;
Abbruzzese, James L. ;
Sevick-Muraca, Eva M. ;
Li, Chun .
MOLECULAR IMAGING, 2004, 3 (04) :343-351
[40]   Molecular imaging of angiogenesis in early-stage atherosclerosis with αvβ3-Integrin-targeted nanoparticles [J].
Winter, PM ;
Morawski, AM ;
Caruthers, SD ;
Fuhrhop, RW ;
Zhang, HY ;
Williams, TA ;
Allen, JS ;
Lacy, EK ;
Robertson, JD ;
Lanza, GM ;
Wickline, SA .
CIRCULATION, 2003, 108 (18) :2270-2274