Invariant and orthonormal scalar measures derived from magnetic resonance diffusion tensor imaging

被引:20
作者
Bahn, MM [1 ]
机构
[1] Washington Univ, Sch Med, Mallinckrodt Inst Radiol, Neuroradiol Sect, St Louis, MO 63110 USA
关键词
diffusion tensor imaging; magnetic resonance imaging; anisotropy; diffusion; skewness;
D O I
10.1006/jmre.1999.1875
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
A diffusion tensor is a mathematical construct used to describe water diffusion in complicated biological structures. It describes a process which occurs in all directions simultaneously, It is difficult to comprehend or graphically display the information in the diffusion tensor. This paper describes a coordinate system approach for producing scalar measures which characterize key aspects of the diffusion tensor. The eigenvalues of the diffusion tensor are introduced as the three elements of a point in a Cartesian coordinate system. The Cartesian coordinates are then expressed in cylindrical and spherical coordinates. The orthonormal coordinates of the spherical system are particularly useful scalar measures of attributes of the diffusion tensor: One coordinate contains all the information about the overall magnitude of diffusion. Another contains all of the anisotropy information. The third coordinate contains all of the information about skewness. No information is lost when transforming the original eigenvalues to spherical coordinates. (C) 1999 Academic Press.
引用
收藏
页码:68 / 77
页数:10
相关论文
共 8 条
[1]   MR DIFFUSION TENSOR SPECTROSCOPY AND IMAGING [J].
BASSER, PJ ;
MATTIELLO, J ;
LEBIHAN, D .
BIOPHYSICAL JOURNAL, 1994, 66 (01) :259-267
[2]   Inferring microstructural features and the physiological state of tissues from diffusion-weighted images [J].
Basser, PJ .
NMR IN BIOMEDICINE, 1995, 8 (7-8) :333-344
[3]  
Basser PJ, 1996, J MAGN RESON SER B, V111, P209, DOI [10.1006/jmrb.1996.0086, 10.1016/j.jmr.2011.09.022]
[4]   Encoding of anisotropic diffusion with tetrahedral gradients: A general mathematical diffusion formalism and experimental results [J].
Conturo, TE ;
McKinstry, RC ;
Akbudak, E ;
Robinson, BH .
MAGNETIC RESONANCE IN MEDICINE, 1996, 35 (03) :399-412
[5]  
Einstein Albert., 1956, INVESTIGATION THEORY
[6]   Toward a quantitative assessment of diffusion anisotropy [J].
Pierpaoli, C ;
Basser, PJ .
MAGNETIC RESONANCE IN MEDICINE, 1996, 36 (06) :893-906
[7]  
Pierpaoli C, 1997, MAGNET RESON MED, V37, P972
[8]  
Spiegel M.R., 1988, SCHAUMS OUTLINE THEO