Allyl functionalized telechelic linear polymer and star polymer via RAFT polymerization

被引:47
作者
Zhang, Liwei [1 ]
Chen, Yongming [1 ]
机构
[1] Chinese Acad Sci, Inst Chem, State Key Lab Polymer Phys & Chem, Joint Lab Polymer Sci & Mat, Beijing 100080, Peoples R China
基金
中国国家自然科学基金;
关键词
allyl polymers; telechelic polymers; star polymers;
D O I
10.1016/j.polymer.2006.05.052
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Reversible addition-fragmentation chain transfer (RAFT) polymerization of styrene using bisallyl trithiocarbonate as a chain transfer agent (CTA) was studied. The polymerization exhibited first-order kinetics and the molecular weight increased linearly with increase of monomer conversion. Well defined allyl-functionalized telechelic polystyrene (PS), poly(tert-butyl acrylate) (PtBA) and corresponding triblock copolymers, polystyrene-b-poly(n-butyl acrylate)-b-polystyrene (PS-b-PnBA-b-PS) and poly(tert-butyl acrylate)-b-polystyrene-b-poly(tert-butyI acrylate) (PtBA-b-PS-b-PtBA) were prepared as characterized with GPC and NMR analysis. The allyl-end groups of the telechelic PS have been switched to 1,2-dibromopropyl groups quantitatively by bromine addition reaction, further substitution of the bromide with azide was also made. Furthermore, star PS with allyl-end-functionalized arms was synthesized by RAFT polymerization of divinyl benzene using allyl-functionalized PS as a macro-CTA via arm-first approach. Star polymer with a thiol-functionalized core was generated by aminolysis reaction of the star polymer and ethylenediamine. As a result, difunctionalized star polymer with allyl and thiol groups was obtained and was used as a stabilizer for the formation of gold nanoparticles. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:5259 / 5266
页数:8
相关论文
共 48 条
[1]   Core-functionalized star polymers by transition metal-catalyzed living radical polymerization. 1. Synthesis and characterization of star polymers with PMMA arms and amide cores [J].
Baek, KY ;
Kamigaito, M ;
Sawamoto, M .
MACROMOLECULES, 2001, 34 (22) :7629-7635
[2]  
Bake K, 2002, MACROMOLECULES, V35, P1493
[3]   RAFTing down under: Tales of missing radicals, fancy architectures, and mysterious holes [J].
Barner-Kowollik, C ;
Davis, TP ;
Heuts, JPA ;
Stenzel, MH ;
Vana, P ;
Whittaker, M .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2003, 41 (03) :365-375
[4]   Synthesis of telechelic polyacrylates with unsaturated end-groups [J].
Bielawski, CW ;
Jethmalani, JM ;
Grubbs, RH .
POLYMER, 2003, 44 (13) :3721-3726
[5]   Synthesis and analysis of telechelic polyisobutylenes for hydrogen-bonded supramolecular pseudo-block copolymers [J].
Binder, WH ;
Kunz, MJ ;
Kluger, C ;
Hayn, G ;
Saf, R .
MACROMOLECULES, 2004, 37 (05) :1749-1759
[6]   A modular approach toward functionalized three-dimensional macromolecules:: From synthetic concepts to practical applications [J].
Bosman, AW ;
Vestberg, R ;
Heumann, A ;
Fréchet, JMJ ;
Hawker, CJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (03) :715-728
[7]   Synthesis of telechelic vinyl polymers by a two-component iniferter [J].
Cho, IW ;
Kim, J .
POLYMER, 1999, 40 (06) :1577-1580
[8]   Functional polymers by atom transfer radical polymerization [J].
Coessens, V ;
Pintauer, T ;
Matyjaszewski, K .
PROGRESS IN POLYMER SCIENCE, 2001, 26 (03) :337-377
[9]   Aqueous RAFT polymerization of acrylamide and N,N-dimethylacrylamide at room temperature [J].
Convertine, AJ ;
Lokitz, BS ;
Lowe, AB ;
Scales, CW ;
Myrick, LJ ;
McCormick, CL .
MACROMOLECULAR RAPID COMMUNICATIONS, 2005, 26 (10) :791-795
[10]   Facile, controlled, room-temperature RAFT polymerization of N-isopropylacrylamide [J].
Convertine, AJ ;
Ayres, N ;
Scales, CW ;
Lowe, AB ;
McCormick, CL .
BIOMACROMOLECULES, 2004, 5 (04) :1177-1180