Numerical implementation of two nonconforming finite element methods for unilateral contact

被引:80
作者
Hild, P [1 ]
机构
[1] Univ Toulouse 3, INSAT, CNRS, Unite Mixte Rech,UMR 5640, F-31062 Toulouse, France
关键词
unilateral contact; nonmatching meshes; mortar finite element method; global contact condition; local contact condition;
D O I
10.1016/S0045-7825(99)00096-1
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We consider the finite element approximation of the unilateral contact problem between elastic bodies. We are interested in a practical problem which often occurs in finite element computations concerning two independently discretized bodies in unilateral contact. It follows that the nodes of both bodies located on the contact surface do not fit together. We present two different approaches in order to define unilateral contact on nonmatching meshes. The first is an extension of the mortar finite element method to variational inequalities that defines the contact in a global way. On the contrary, the second one expresses local node-on-segment contact conditions. In both cases, the theoretical approximation properties are given. Then, Ne implement and compare the two methods. (C) 2000 Elsevier Science S.A. All rights reserved.
引用
收藏
页码:99 / 123
页数:25
相关论文
共 27 条
[11]   A TIGHT UPPER BOUND ON RATE OF CONVERGENCE OF FRANK-WOLFE ALGORITHM [J].
CANON, MD ;
CULLUM, CD .
SIAM JOURNAL ON CONTROL, 1968, 6 (04) :509-&
[12]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
[13]  
COOREVITS P, 1998, UNPUB REV EUR EL FIN
[14]  
Duvaut G., 1972, INEQUATIONS MECANIQU
[15]  
Frank M., 1956, Naval research logistics quarterly, V3, P95, DOI 10.1002/nav.3800030109
[16]  
Haslinger J., 1981, Aplikace Matematiky, V26, P263
[17]  
Haslinger J., 1996, HDBK NUM AN, V4, P313, DOI DOI 10.1016/S1570-8659(96)80005-6
[18]   Nonconforming finite elements for unilateral contact with friction [J].
Hild, P .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (06) :707-710
[19]   On optimal finite element approximation for unilateral contact problems [J].
Hild, P .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (10) :1233-1236
[20]  
HILD P, 1998, THESIS U P SABATIER