Fungicide activity through activation of a fungal signalling pathway

被引:205
作者
Kojima, K
Takano, Y [1 ]
Yoshimi, A
Tanaka, C
Kikuchi, T
Okuno, T
机构
[1] Kyoto Univ, Grad Sch Agr, Plant Pathol Lab, Kyoto 6068502, Japan
[2] Kyoto Univ, Grad Sch Agr, Lab Environm Mycosci, Kyoto 6068502, Japan
关键词
D O I
10.1111/j.1365-2958.2004.04244.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Fungicides generally inhibit enzymatic reactions involved in fungal cellular biosynthesis. Here we report, for the first time, an example of fungicidal effects through hyperactivation of a fungal signal transduction pathway. The OSC1 gene, encoding a MAP kinase (MAPK) related to yeast Hog1, was isolated from the fungal pathogen Colletotrichum lagenarium that causes cucumber anthracnose. The osc1 knockout mutants were sensitive to high osmotic stress and showed increased resistance to the fungicide fludioxonil, indicating that Osc1 is involved in responses to hyperosmotic stress and sensitivity to fludioxonil. The Osc1 MAPK is phosphorylated under high osmotic conditions, indicating activation of Osc1 by high osmotic stress. Importantly, fludioxonil treatment also activates phosphorylation of Osc1, suggesting that improper activation of Osc1 by fludioxonil has negative effects on fungal growth. In the presence of fludioxonil, the wild-type fungus was not able to infect the host plant because of a failure of appressorium-mediated penetration, whereas osc1 mutants successfully infected plants. Analysis using a OSC1-GFP fusion gene indicated that Osc1 is rapidly translocated to the nucleus in appressorial cells after the addition of fludioxonil, suggesting that fludioxonil impairs the function of infection structures by activation of Osc1. Furthermore, fludioxonil activates Hog1-type MAPKs in the plant pathogenic fungi Cochliobolus heterostrophus and Botrytis cinerea. These results strongly suggest that fludioxonil acts as a fungicide, in part, through activation of the MAPK cascade in fungal pathogens.
引用
收藏
页码:1785 / 1796
页数:12
相关论文
共 48 条
[1]  
Agrios G.E., 2007, Plant Pathology, V5th
[2]   GPD1, WHICH ENCODES GLYCEROL-3-PHOSPHATE DEHYDROGENASE, IS ESSENTIAL FOR GROWTH UNDER OSMOTIC-STRESS IN SACCHAROMYCES-CEREVISIAE, AND ITS EXPRESSION IS REGULATED BY THE HIGH-OSMOLARITY GLYCEROL RESPONSE PATHWAY [J].
ALBERTYN, J ;
HOHMANN, S ;
THEVELEIN, JM ;
PRIOR, BA .
MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (06) :4135-4144
[3]   Role of the mitogen-activated protein kinase hog1p in morphogenesis and virulence of Candida albicans [J].
Alonso-Monge, R ;
Navarro-García, F ;
Molero, G ;
Diez-Orejas, R ;
Gustin, M ;
Pla, J ;
Sánchez, M ;
Nombela, C .
JOURNAL OF BACTERIOLOGY, 1999, 181 (10) :3058-3068
[4]   The Hog1 mitogen-activated protein kinase is essential in the oxidative stress response and chlamydospore formation in Candida albicans [J].
Alonso-Monge, R ;
Navarro-García, F ;
Román, E ;
Negredo, AI ;
Eisman, B ;
Nombela, C ;
Pla, J .
EUKARYOTIC CELL, 2003, 2 (02) :351-361
[5]   Optical measurements of invasive forces exerted by appressoria of a plant pathogenic fungus [J].
Bechinger, C ;
Giebel, KF ;
Schnell, M ;
Leiderer, P ;
Deising, HB ;
Bastmeyer, M .
SCIENCE, 1999, 285 (5435) :1896-1899
[6]   AN OSMOSENSING SIGNAL TRANSDUCTION PATHWAY IN YEAST [J].
BREWSTER, JL ;
DEVALOIR, T ;
DWYER, ND ;
WINTER, E ;
GUSTIN, MC .
SCIENCE, 1993, 259 (5102) :1760-1763
[7]   An osmosensing histidine kinase mediates dicarboximide fungicide resistance in Botryotinia fuckeliana (Botrytis cinerea) [J].
Cui, W ;
Beever, RE ;
Parkes, SL ;
Weeds, PL ;
Templeton, MD .
FUNGAL GENETICS AND BIOLOGY, 2002, 36 (03) :187-198
[8]   Glycerol generates turgor in rice blast [J].
deJong, JC ;
MCCormack, BJ ;
Smirnoff, N ;
Talbot, NJ .
NATURE, 1997, 389 (6648) :244-245
[9]   Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea [J].
Dixon, KP ;
Xu, JR ;
Smirnoff, N ;
Talbot, NJ .
PLANT CELL, 1999, 11 (10) :2045-2058
[10]   Dicarboximide resistance in field isolates of Alternaria alternata is mediated by a mutation in a two-component histidine kinase gene [J].
Dry, IB ;
Yuan, KH ;
Hutton, DG .
FUNGAL GENETICS AND BIOLOGY, 2004, 41 (01) :102-108