Analysing Amazonian forest productivity using a new individual and trait-based model (TFS v.1)

被引:78
作者
Fyllas, N. M. [1 ]
Gloor, E. [1 ]
Mercado, L. M. [2 ]
Sitch, S. [2 ]
Quesada, C. A. [3 ]
Domingues, T. F. [4 ]
Galbraith, D. R. [1 ]
Torre-Lezama, A. [5 ]
Vilanova, E. [5 ]
Ramirez-Angulo, H. [5 ]
Higuchi, N. [3 ]
Neill, D. A. [6 ]
Silveira, M. [7 ]
Ferreira, L. [8 ]
Aymard C, G. A. [13 ]
Malhi, Y. [9 ]
Phillips, O. L. [1 ]
Lloyd, J. [10 ,11 ,12 ]
机构
[1] Univ Leeds, Sch Geog, Leeds LS2 9JT, W Yorkshire, England
[2] Univ Exeter, Sch Geog, Exeter, Devon, England
[3] Inst Nacl de Pesquisas da Amazonia, Manaus, Amazonas, Brazil
[4] Univ Edinburgh, Sch GeoSci, Edinburgh, Midlothian, Scotland
[5] Univ Los Andes, Inst Invest Desarrollo, Forestal Fac Ciencias Forestales & Ambientales, Merida, Venezuela
[6] Univ Estatal Amazonica, Dept Wildlife Conservat & Management, Puyo, Pastaza, Ecuador
[7] Univ Fed Acre, Rio Branco, Brazil
[8] Museu Paraense Emilio Goeldi, Belem, Para, Brazil
[9] Univ Oxford, Sch Geog & Environm, Environm Change Inst, Oxford, England
[10] James Cook Univ, Ctr Trop Environm & Sustainabil Sci TESS, Cairns, Australia
[11] James Cook Univ, Sch Marine & Trop Biol, Cairns, Australia
[12] Univ London Imperial Coll Sci Technol & Med, Dept Life Sci, Ascot, Berks, England
[13] Herbario Univ PORT, Programa Ciencias Agro & Mar, UNELLEZ Guanare, Guanare, Estado Portugue, Venezuela
基金
英国自然环境研究理事会;
关键词
NET PRIMARY PRODUCTIVITY; TROPICAL RAIN-FORESTS; GLOBAL VEGETATION MODELS; WOODY-TISSUE RESPIRATION; CARBON ALLOCATION; CLIMATE-CHANGE; FUNCTIONAL COMPOSITION; PLANT RESPIRATION; SPATIAL-PATTERNS; BIOMASS;
D O I
10.5194/gmd-7-1251-2014
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Repeated long-term censuses have revealed large-scale spatial patterns in Amazon basin forest structure and dynamism, with some forests in the west of the basin having up to a twice as high rate of aboveground biomass production and tree recruitment as forests in the east. Possible causes for this variation could be the climatic and edaphic gradients across the basin and/or the spatial distribution of tree species composition. To help understand causes of this variation a new individual-based model of tropical forest growth, designed to take full advantage of the forest census data available from the Amazonian Forest Inventory Network (RAIN-FOR), has been developed. The model allows for within-stand variations in tree size distribution and key functional traits and between-stand differences in climate and soil physical and chemical properties. It runs at the stand level with four functional traits - leaf dry mass per area (M-a), leaf nitrogen (N-L) and phosphorus (P-L) content and wood density (D-W) varying from tree to tree - in a way that replicates the observed continua found within each stand. We first applied the model to validate canopy-level water fluxes at three eddy covariance flux measurement sites. For all three sites the canopy-level water fluxes were adequately simulated. We then applied the model at seven plots, where intensive measurements of carbon allocation are available. Tree-by-tree multi-annual growth rates generally agreed well with observations for small trees, but with deviations identified for larger trees. At the stand level, simulations at 40 plots were used to explore the influence of climate and soil nutrient availability on the gross (Pi(G)) and net (Pi(N)) primary production rates as well as the carbon use efficiency (C-U). Simulated Pi(G), Pi(N) and C-U were not associated with temperature. On the other hand, all three measures of stand level productivity were positively related to both mean annual precipitation and soil nutrient status. Sensitivity studies showed a clear importance of an accurate parameterisation of within- and between-stand trait variability on the fidelity of model predictions. For example, when functional tree diversity was not included in the model (i.e. with just a single plant functional type with mean basin-wide trait values) the predictive ability of the model was reduced. This was also the case when basin-wide (as opposed to site-specific) trait distributions were applied within each stand. We conclude that models of tropical forest carbon, energy and water cycling should strive to accurately represent observed variations in functionally important traits across the range of relevant scales.
引用
收藏
页码:1251 / 1269
页数:19
相关论文
共 120 条
[21]   The production, allocation and cycling of carbon in a forest on fertile terra preta soil in eastern Amazonia compared with a forest on adjacent infertile soil [J].
Doughty, Christopher E. ;
Metcalfe, Daniel B. ;
da Costa, Mauricio C. ;
de Oliveira, Alex A. R. ;
Neto, G. F. C. ;
Silva, Joao A. ;
Aragao, Luiz E. O. C. ;
Almeida, Samuel S. ;
Quesada, Carlos A. ;
Girardin, Cecile A. J. ;
Halladay, Kate ;
da Costa, Anthonio C. L. ;
Malhi, Yadvinder .
PLANT ECOLOGY & DIVERSITY, 2014, 7 (1-2) :41-53
[22]  
Duponnois R., 2012, BACTERIA AGROBIOLOGY, P79
[23]   Influence of four major plant traits on average height, leaf-area cover, net primary productivity, and biomass density in single-species forests: a theoretical investigation [J].
Falster, Daniel S. ;
Brannstrom, Ake ;
Dieckmann, Ulf ;
Westoby, Mark .
JOURNAL OF ECOLOGY, 2011, 99 (01) :148-164
[24]   A BIOCHEMICAL-MODEL OF PHOTOSYNTHETIC CO2 ASSIMILATION IN LEAVES OF C-3 SPECIES [J].
FARQUHAR, GD ;
CAEMMERER, SV ;
BERRY, JA .
PLANTA, 1980, 149 (01) :78-90
[25]   Drought-induced shifts in the floristic and functional composition of tropical forests in Ghana [J].
Fauset, Sophie ;
Baker, Timothy R. ;
Lewis, Simon L. ;
Feldpausch, Ted R. ;
Affum-Baffoe, Kofi ;
Foli, Ernest G. ;
Hamer, Keith C. ;
Swaine, Michael D. .
ECOLOGY LETTERS, 2012, 15 (10) :1120-1129
[26]   Height-diameter allometry of tropical forest trees [J].
Feldpausch, T. R. ;
Banin, L. ;
Phillips, O. L. ;
Baker, T. R. ;
Lewis, S. L. ;
Quesada, C. A. ;
Affum-Baffoe, K. ;
Arets, E. J. M. M. ;
Berry, N. J. ;
Bird, M. ;
Brondizio, E. S. ;
de Camargo, P. ;
Chave, J. ;
Djagbletey, G. ;
Domingues, T. F. ;
Drescher, M. ;
Fearnside, P. M. ;
Franca, M. B. ;
Fyllas, N. M. ;
Lopez-Gonzalez, G. ;
Hladik, A. ;
Higuchi, N. ;
Hunter, M. O. ;
Iida, Y. ;
Salim, K. A. ;
Kassim, A. R. ;
Keller, M. ;
Kemp, J. ;
King, D. A. ;
Lovett, J. C. ;
Marimon, B. S. ;
Marimon-Junior, B. H. ;
Lenza, E. ;
Marshall, A. R. ;
Metcalfe, D. J. ;
Mitchard, E. T. A. ;
Moran, E. F. ;
Nelson, B. W. ;
Nilus, R. ;
Nogueira, E. M. ;
Palace, M. ;
Patino, S. ;
Peh, K. S. -H. ;
Raventos, M. T. ;
Reitsma, J. M. ;
Saiz, G. ;
Schrodt, F. ;
Sonke, B. ;
Taedoumg, H. E. ;
Tan, S. .
BIOGEOSCIENCES, 2011, 8 (05) :1081-1106
[27]   Assessing uncertainties in a second-generation dynamic vegetation model caused by ecological scale limitations [J].
Fisher, Rosie ;
McDowell, Nate ;
Purves, Drew ;
Moorcroft, Paul ;
Sitch, Stephen ;
Cox, Peter ;
Huntingford, Chris ;
Meir, Patrick ;
Woodward, F. Ian .
NEW PHYTOLOGIST, 2010, 187 (03) :666-681
[28]   Environmental factors predict community functional composition in Amazonian forests [J].
Fortunel, Claire ;
Paine, C. E. Timothy ;
Fine, Paul V. A. ;
Kraft, Nathan J. B. ;
Baraloto, Christopher .
JOURNAL OF ECOLOGY, 2014, 102 (01) :145-155
[29]   Modeling carbon allocation in trees: a search for principles [J].
Franklin, Oskar ;
Johansson, Jacob ;
Dewar, Roderick C. ;
Dieckmann, Ulf ;
McMurtrie, Ross E. ;
Brannstrom, Ake ;
Dybzinski, Ray .
TREE PHYSIOLOGY, 2012, 32 (06) :648-666
[30]   Toward an allocation scheme for global terrestrial carbon models [J].
Friedlingstein, P ;
Joel, G ;
Field, CB ;
Fung, IY .
GLOBAL CHANGE BIOLOGY, 1999, 5 (07) :755-770