The control of chaos: theory and applications

被引:736
作者
Boccaletti, S
Grebogi, C
Lai, YC
Mancini, H
Maza, D
机构
[1] Univ Navarra, Inst Phys, Dept Appl Math & Phys, Pamplona 31080, Spain
[2] Univ Maryland, Dept Math, Inst Plasma Res, College Pk, MD 20742 USA
[3] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA
[4] Arizona State Univ, Ctr Syst Sci & Engn Res, Dept Math & Elect Engn, Tempe, AZ 85287 USA
来源
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS | 2000年 / 329卷 / 03期
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0370-1573(99)00096-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Control of chaos refers to a process wherein a tiny perturbation is applied to a chaotic system, in order to realize a desirable (chaotic, periodic, or stationary) behavior. We review the major ideas involved in the control of chaos, and present in detail two methods: the Ott-Grebogi-Yorke (OGY) method and the adaptive method. We also discuss a series of relevant issues connected with chaos control, such as the targeting problem, i.e., how to bring a trajectory to a small neighborhood of a desired location in the chaotic attractor in both low and high dimensions, and point out applications for controlling fractal basin boundaries. In short, we describe procedures for stabilizing desired chaotic orbits embedded in a chaotic attractor and discuss the issues of communicating with chaos by controlling symbolic sequences and of synchronizing chaotic systems. Finally, we give a review of relevant experimental applications of these ideas and techniques. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:103 / 197
页数:95
相关论文
共 193 条
  • [1] TOPOLOGICAL ENTROPY
    ADLER, RL
    KONHEIM, AG
    MCANDREW, MH
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 114 (02) : 309 - &
  • [2] RIDDLED BASINS
    Alexander, J. C.
    Yorke, James A.
    You, Zhiping
    Kan, I.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1992, 2 (04): : 795 - 813
  • [3] Alligood K. T., 1997, CHAOS INTRO DYNAMICA
  • [4] Encoding and decoding messages with chaotic lasers
    Alsing, PM
    Gavrielides, A
    Kovanis, V
    Roy, R
    Thornburg, KS
    [J]. PHYSICAL REVIEW E, 1997, 56 (06): : 6302 - 6310
  • [5] ANDERSON BD, 1990, OPTIMAL FILTERING, P193
  • [6] Arecchi F. T., 1998, INT J BIFURCATION CH, V8
  • [7] 2-DIMENSIONAL REPRESENTATION OF A DELAYED DYNAMIC SYSTEM
    ARECCHI, FT
    GIACOMELLI, G
    LAPUCCI, A
    MEUCCI, R
    [J]. PHYSICAL REVIEW A, 1992, 45 (07): : R4225 - R4228
  • [8] The control of chaos: Theoretical schemes and experimental realizations
    Arecchi, FT
    Boccaletti, S
    Ciofini, M
    Meucci, R
    Grebogi, C
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1998, 8 (08): : 1643 - 1655
  • [9] ADAPTIVE RECOGNITION OF A CHAOTIC DYNAMICS
    ARECCHI, FT
    BASTI, G
    BOCCALETTI, S
    PERRONE, AL
    [J]. EUROPHYSICS LETTERS, 1994, 26 (05): : 327 - 332
  • [10] BUBBLING OF ATTRACTORS AND SYNCHRONIZATION OF CHAOTIC OSCILLATORS
    ASHWIN, P
    BUESCU, J
    STEWART, I
    [J]. PHYSICS LETTERS A, 1994, 193 (02) : 126 - 139