A new generalized harmonic evolution system

被引:258
作者
Lindblom, Lee [1 ]
Scheel, Mark A.
Kidder, Lawrence E.
Owen, Robert
Rinne, Oliver
机构
[1] CALTECH, Pasadena, CA 91125 USA
[2] Cornell Univ, Ctr Radiophys & Space Res, Ithaca, NY 14853 USA
关键词
D O I
10.1088/0264-9381/23/16/S09
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A new representation of the Einstein evolution equations is presented that is first order, linearly degenerate and symmetric hyperbolic. This new system uses the generalized harmonic method to specify the coordinates, and exponentially suppresses all small short-wavelength constraint violations. Physical and constraint-preserving boundary conditions are derived for this system, and numerical tests that demonstrate the effectiveness of the constraint suppression properties and the constraint- preserving boundary conditions are presented.
引用
收藏
页码:S447 / S462
页数:16
相关论文
共 31 条
[1]   First-order symmetrizable hyperbolic formulations of Einstein's equations including lapse and shift as dynamical fields [J].
Alvi, K .
CLASSICAL AND QUANTUM GRAVITY, 2002, 19 (20) :5153-5162
[2]  
[Anonymous], 1927, MATH THEORY RELATIVI
[3]  
BABIUC MC, 2006, CLASSICAL QUANT GRAV, V23, pS321
[4]   General-covariant evolution formalism for numerical relativity -: art. no. 104005 [J].
Bona, C ;
Ledvinka, T ;
Palenzuela, C ;
Zácek, M .
PHYSICAL REVIEW D, 2003, 67 (10)
[5]  
BRUHAT Y, 1967, GRAVITATION INTRO CU, P130
[6]   Well posed constraint-preserving boundary conditions for the linearized Einstein equations [J].
Calabrese, G ;
Pullin, J ;
Reula, O ;
Sarbach, O ;
Tiglio, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 240 (1-2) :377-395
[7]   Constraint-preserving boundary conditions in numerical relativity [J].
Calabrese, G ;
Lehner, L ;
Tiglio, M .
PHYSICAL REVIEW D, 2002, 65 (10)
[8]   QUASI-NORMAL MODES OF SCHWARZSCHILD BLACK-HOLE [J].
CHANDRASEKHAR, S ;
DETWEILER, S .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1975, 344 (1639) :441-452
[9]   EINSTEIN EVOLUTION EQUATIONS AS A FIRST-ORDER QUASILINEAR SYMMETRIC HYPERBOLIC SYSTEM .1. [J].
FISCHER, AE ;
MARSDEN, JE .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1972, 28 (01) :1-&
[10]  
Fock V., 1959, THEORY SPACE TIME GR