Brassinosteroid signal transduction: still casting the actors

被引:93
作者
Schumacher, K
Chory, J
机构
[1] Salk Inst Biol Studies, Howard Hughes Med Inst, La Jolla, CA 92037 USA
[2] Salk Inst Biol Studies, Plant Biol Lab, La Jolla, CA 92037 USA
关键词
D O I
10.1016/S1369-5266(99)00038-2
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Significant advances in the genetic dissection of brassinosteroid biosynthesis and signaling have been made during the past few years. Genetic and biochemical data have helped to elucidate the pathways of biosynthesis of brassinolide, the most active brassinosteroid. In addition, several models have been put forward for the perception of brassinolide by its putative receptor, BRI1, a ubiquitously expressed plasma membrane localized protein kinase. These studies provide the basic framework for future analysis of brassinosteroid signaling.
引用
收藏
页码:79 / 84
页数:6
相关论文
共 45 条
  • [1] A tale of dwarfs and drugs: brassinosteroids to the rescue
    Altmann, T
    [J]. TRENDS IN GENETICS, 1998, 14 (12) : 490 - 495
  • [2] The tomato Dwarf gene isolated by heterologous transposon tagging encodes the first member of a new cytochrome P450 family
    Bishop, GJ
    Harrison, K
    Jones, JDG
    [J]. PLANT CELL, 1996, 8 (06) : 959 - 969
  • [3] The tomato DWARF enzyme catalyses C-6 oxidation in brassinosteroid biosynthesis
    Bishop, GJ
    Nomura, T
    Yokota, T
    Harrison, K
    Noguchi, T
    Fujioka, S
    Takatsuto, S
    Jones, JDG
    Kamiya, Y
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (04) : 1761 - 1766
  • [4] Interaction of the maize and Arabidopsis kinase interaction domains with a subset of receptor-like protein kinases: Implications for transmembrane signaling in plants
    Braun, DM
    Stone, JM
    Walker, JC
    [J]. PLANT JOURNAL, 1997, 12 (01) : 83 - 95
  • [5] The SREBP pathway: Regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor
    Brown, MS
    Goldstein, JL
    [J]. CELL, 1997, 89 (03) : 331 - 340
  • [6] The Arabidopsis dwarf1 mutant is defective in the conversion of 24-methylenecholesterol to campesterol in brassinosteroid biosynthesis
    Choe, S
    Dilkes, BP
    Gregory, BD
    Ross, AS
    Yuan, H
    Noguchi, T
    Fujioka, S
    Takatsuto, S
    Tanaka, A
    Yoshida, S
    Tax, FE
    Feldmann, KA
    [J]. PLANT PHYSIOLOGY, 1999, 119 (03) : 897 - 907
  • [7] The Arabidopsis dwf7/ste1 mutant is defective in the Δ7 sterol C-5 desaturation step leading to brassinosteroid biosynthesis
    Choe, SW
    Noguchi, T
    Fujioka, S
    Takatsuto, S
    Tissier, CP
    Gregory, BD
    Ross, AS
    Tanaka, A
    Yoshida, S
    Tax, FE
    Feldmann, KA
    [J]. PLANT CELL, 1999, 11 (02) : 207 - 221
  • [8] The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22α-hydroxylation steps in brassinosteroid biosynthesis
    Choe, SW
    Dilkes, BP
    Fujioka, S
    Takatsuto, S
    Sakurai, A
    Feldmann, KA
    [J]. PLANT CELL, 1998, 10 (02) : 231 - 243
  • [9] Christ M, 1999, VITAM HORM, V57, P325
  • [10] A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development
    Clouse, SD
    Langford, M
    McMorris, TC
    [J]. PLANT PHYSIOLOGY, 1996, 111 (03) : 671 - 678