Dynamic bioprocessing and microfluidic transport control with smart magnetic nanoparticles in laminar-flow devices

被引:60
作者
Lai, James J. [1 ]
Nelson, Kjell E. [1 ]
Nash, Michael A. [1 ]
Hoffman, Allan S. [1 ]
Yager, Paul [1 ]
Stayton, Patrick S. [1 ]
机构
[1] Univ Washington, Dept Bioengn, Seattle, WA 98195 USA
关键词
ON-CHIP; CLINICAL DIAGNOSTICS; RAFT POLYMERIZATION; SEPARATION; IMMUNOASSAY; TEMPERATURE; CELLS; PH; POLY(DIMETHYLSILOXANE); ELECTROPHORESIS;
D O I
10.1039/b817754f
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
In the absence of applied forces, the transport of molecules and particulate reagents across laminar flowstreams in microfluidic devices is dominated by the diffusivities of the transported species. While the differential diffusional properties between smaller and larger diagnostic targets and reagents have been exploited for bioseparation and assay applications, there are limitations to methods that depend on these intrinsic size differences. Here a new strategy is described for exploiting the sharply reversible change in size and magnetophoretic mobility of "smart" magnetic nanoparticles (mNPs) to perform bioseparation and target isolation under continuous flow processing conditions. The isolated 5 nm mNPs do not exhibit significant magnetophoretic velocities, but do exhibit high magnetophoretic velocities when aggregated by the action of a pH-responsive polymer coating. A simple external magnet is used to magnetophorese the aggregated mNPs that have captured a diagnostic target from a lower pH laminar flowstream (pH 7.3) to a second higher pH flowstream (pH 8.4) that induces rapid mNP disaggregation. In this second dis-aggregated state and flowstream, the mNPs continue to flow past the magnet rather than being immobilized at the channel surface near the magnet. This stimuli-responsive reagent system has been shown to transfer 81% of a model protein target from an input flowstream to a second flowstream in a continuous flow H-filter device.
引用
收藏
页码:1997 / 2002
页数:6
相关论文
共 43 条
[1]   Inkjet-printed microfluidic multianalyte chemical sensing paper [J].
Abe, Koji ;
Suzuki, Koji ;
Citterio, Daniel .
ANALYTICAL CHEMISTRY, 2008, 80 (18) :6928-6934
[2]   Disposable Smart lab on a chip for point-of-care clinical diagnostics [J].
Ahn, CH ;
Choi, JW ;
Beaucage, G ;
Nevin, JH ;
Lee, JB ;
Puntambekar, A ;
Lee, JY .
PROCEEDINGS OF THE IEEE, 2004, 92 (01) :154-173
[3]   Formation of natural pH gradients in a microfluidic device under flow conditions: Model and experimental validation [J].
Cabrera, CR ;
Finlayson, B ;
Yager, P .
ANALYTICAL CHEMISTRY, 2001, 73 (03) :658-666
[4]   An instrument to determine the magnetophoretic mobility of labeled, biological cells and paramagnetic particles [J].
Chalmers, JJ ;
Zhao, Y ;
Nakamura, M ;
Melnik, K ;
Lasky, L ;
Moore, L ;
Zborowski, M .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1999, 194 (1-3) :231-241
[5]   A COMPARISON OF IMMUNOMAGNETIC SEPARATION AND DIRECT CULTURE FOR THE ISOLATION OF VEROCYTOTOXIN-PRODUCING ESCHERICHIA-COLI O157 FROM BOVINE FECES [J].
CHAPMAN, PA ;
WRIGHT, DJ ;
SIDDONS, CA .
JOURNAL OF MEDICAL MICROBIOLOGY, 1994, 40 (06) :424-427
[6]   GRAFT-COPOLYMERS THAT EXHIBIT TEMPERATURE-INDUCED PHASE-TRANSITIONS OVER A WIDE-RANGE OF PH [J].
CHEN, GH ;
HOFFMAN, AS .
NATURE, 1995, 373 (6509) :49-52
[7]   Facile, controlled, room-temperature RAFT polymerization of N-isopropylacrylamide [J].
Convertine, AJ ;
Ayres, N ;
Scales, CW ;
Lowe, AB ;
McCormick, CL .
BIOMACROMOLECULES, 2004, 5 (04) :1177-1180
[8]   Isoelectric focusing in a poly(dimethylsiloxane) microfluidic chip [J].
Cui, HC ;
Horiuchi, K ;
Dutta, P ;
Ivory, CF .
ANALYTICAL CHEMISTRY, 2005, 77 (05) :1303-1309
[9]   Microchannel wall coatings for protein separations by capillary and chip electrophoresis [J].
Doherty, EAS ;
Meagher, RJ ;
Albarghouthi, MN ;
Barron, AE .
ELECTROPHORESIS, 2003, 24 (1-2) :34-54
[10]   Integrated microfluidic devices [J].
Erickson, D ;
Li, DQ .
ANALYTICA CHIMICA ACTA, 2004, 507 (01) :11-26