Vacuum-assisted thermal bonding of plastic capillary electrophoresis microchip imprinted with stainless steel template

被引:62
作者
Chen, ZF
Gao, YH
Lin, JM
Su, RG
Xie, Y
机构
[1] Chinese Acad Sci, Tech Inst Phys & Chem, Beijing 100101, Peoples R China
[2] Chinese Acad Sci, Ecoenvironm Sci Res Ctr, Beijing 100085, Peoples R China
基金
中国国家自然科学基金;
关键词
chip technology; instrumentation; poly(methyl methacrylate);
D O I
10.1016/j.chroma.2004.03.037
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
An improved fabrication of poly(methyl methacrylate) (PMMA)-based capillary electrophoresis microchips has been demonstrated. The microchannel structures on PMMA substrates were generated by one-step hot embossing procedure using a stainless steel template. Hundreds of patterned PMMA substrates have been successfully obtained using the single metal template. Sequent microchannel enclosure with high yield up to 90% was accomplished by a vacuum-assisted thermal bonding method. The results of profilometric scanning of separated substrates showed the dimensions of the channels were well preserved during the bonding process. Finally, analytical functionalities of these PMMA microchips were demonstrated by performing fast electrophoretic separations and high sensitive end-column amperometric detections of dopamine and catechol. The entire fabrication methodology may also be useful for preparation of other thermoplastic microfluidic systems. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:239 / 245
页数:7
相关论文
共 36 条
[1]   Plastic microfluidic devices modified with polyelectrolyte multilayers [J].
Barker, SLR ;
Tarlov, MJ ;
Canavan, H ;
Hickman, JJ ;
Locascio, LE .
ANALYTICAL CHEMISTRY, 2000, 72 (20) :4899-4903
[2]  
Bayer H, 1996, J MICROCOLUMN SEP, V8, P479
[3]  
Becker H, 2000, ELECTROPHORESIS, V21, P12, DOI 10.1002/(SICI)1522-2683(20000101)21:1<12::AID-ELPS12>3.3.CO
[4]  
2-Z
[5]   Polymer microfluidic devices [J].
Becker, H ;
Locascio, LE .
TALANTA, 2002, 56 (02) :267-287
[6]   Electroosmotic flow in composite microchannels and implications in microcapillary electrophoresis systems [J].
Bianchi, F ;
Wagner, F ;
Hoffmann, P ;
Girault, HH .
ANALYTICAL CHEMISTRY, 2001, 73 (04) :829-836
[7]   Fabrication and characterization of poly(methyl methacrylate) microchannels by in situ polymerization with a novel metal template [J].
Chen, ZF ;
Gao, YH ;
Su, RG ;
Li, CW ;
Lin, JM .
ELECTROPHORESIS, 2003, 24 (18) :3246-3252
[8]   Rapid prototyping of microfluidic systems in poly(dimethylsiloxane) [J].
Duffy, DC ;
McDonald, JC ;
Schueller, OJA ;
Whitesides, GM .
ANALYTICAL CHEMISTRY, 1998, 70 (23) :4974-4984
[9]  
ELDERS J, 1995, MICRO ELECTRO MECHANICAL SYSTEMS - IEEE PROCEEDINGS, 1995, P238, DOI 10.1109/MEMSYS.1995.472573
[10]   MICROMACHINING OF CAPILLARY ELECTROPHORESIS INJECTORS AND SEPARATORS ON GLASS CHIPS AND EVALUATION OF FLOW AT CAPILLARY INTERSECTIONS [J].
FAN, ZH ;
HARRISON, DJ .
ANALYTICAL CHEMISTRY, 1994, 66 (01) :177-184