Symplectic quaternion scheme for biophysical molecular dynamics

被引:231
作者
Miller, TF [1 ]
Eleftheriou, M
Pattnaik, P
Ndirango, A
Newns, D
Martyna, GJ
机构
[1] IBM Corp, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA
[2] Indiana Univ, Dept Chem, Bloomington, IN 47405 USA
关键词
D O I
10.1063/1.1473654
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Massively parallel biophysical molecular dynamics simulations, coupled with efficient methods, promise to open biologically significant time scales for study. In order to promote efficient fine-grained parallel algorithms with low communication overhead, the fast degrees of freedom in these complex systems can be divided into sets of rigid bodies. Here, a novel Hamiltonian form of a minimal, nonsingular representation of rigid body rotations, the unit quaternion, is derived, and a corresponding reversible, symplectic integrator is presented. The novel technique performs very well on both model and biophysical problems in accord with a formal theoretical analysis given within, which gives an explicit condition for an integrator to possess a conserved quantity, an explicit expression for the conserved quantity of a symplectic integrator, the latter following and in accord with Calvo and Sanz-Sarna, Numerical Hamiltonian Problems (1994), and extension of the explicit expression to general systems with a flat phase space. (C) 2002 American Institute of Physics.
引用
收藏
页码:8649 / 8659
页数:11
相关论文
共 32 条
[1]   Blue Gene: A vision for protein science using a petaflop supercomputer [J].
Allen, F ;
Almasi, G ;
Andreoni, W ;
Beece, D ;
Berne, BJ ;
Bright, A ;
Brunheroto, J ;
Cascaval, C ;
Castanos, J ;
Coteus, P ;
Crumley, P ;
Curioni, A ;
Denneau, M ;
Donath, W ;
Eleftheriou, M ;
Fitch, B ;
Fleischer, B ;
Georgiou, CJ ;
Germain, R ;
Giampapa, M ;
Gresh, D ;
Gupta, M ;
Haring, R ;
Ho, H ;
Hochschild, P ;
Hummel, S ;
Jonas, T ;
Lieber, D ;
Martyna, G ;
Maturu, K ;
Moreira, J ;
Newns, D ;
Newton, M ;
Philhower, R ;
Picunko, T ;
Pitera, J ;
Pitman, M ;
Rand, R ;
Royyuru, A ;
Salapura, V ;
Sanomiya, A ;
Shah, R ;
Sham, Y ;
Singh, S ;
Snir, M ;
Suits, F ;
Swetz, R ;
Swope, WC ;
Vishnumurthy, N ;
Ward, TJC .
IBM SYSTEMS JOURNAL, 2001, 40 (02) :310-327
[2]  
Allen M. P., 1989, COMPUTER SIMULATION
[3]   MOLECULAR-DYNAMICS SIMULATIONS AT CONSTANT PRESSURE AND-OR TEMPERATURE [J].
ANDERSEN, HC .
JOURNAL OF CHEMICAL PHYSICS, 1980, 72 (04) :2384-2393
[5]  
CALVO MP, 1994, NUMERICAL HAMILTONIA
[6]   Thermodynamic properties of the Williams, OPLS-AA, and MMFF94 all-atom force fields for normal alkanes [J].
Chen, B ;
Martin, MG ;
Siepmann, JI .
JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (14) :2578-2586
[7]  
CICCOTTI G, 1986, COMPUT PHYS REP, V4, P345, DOI 10.1016/0167-7977(86)90022-5
[8]   HIGHER-ORDER HYBRID MONTE-CARLO ALGORITHMS [J].
CREUTZ, M ;
GOCKSCH, A .
PHYSICAL REVIEW LETTERS, 1989, 63 (01) :9-12
[9]  
Dubrovin B. A., 1985, GRADUATE TEXTS MATH
[10]  
Dubrovin B. A., 1985, MODERN GEOMETRY ME 1