Methionine 35 oxidation reduces fibril assembly of the amyloid Aβ-(1-42) peptide of Alzheimer's disease

被引:195
作者
Hou, LM
Kang, I
Marchant, RE
Zagorski, MG [1 ]
机构
[1] Case Western Reserve Univ, Dept Chem, Cleveland, OH 44106 USA
[2] Case Western Reserve Univ, Dept Biomed Engn, Cleveland, OH 44106 USA
关键词
D O I
10.1074/jbc.C200338200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The major component of amyloid plaques in Alzheimer's disease (AD) is Abeta, a small peptide that has high propensity to assemble as aggregated 13-sheet structures. Using three well established techniques for studying amyloid structure, namely circular dichroism, thio-flavin-T fluorescence, and atomic force microscopy, we demonstrate that oxidation of the Met-35 side chain to a methionine sulfoxide (Met-35(ox)) significantly hinders the rate of fibril formation for the 42-residue Abeta-(1-42) at physiological pH. Met-35(ox) also alters the characteristic Abeta fibril morphology and prevents formation of the protofibril, which is a key intermediate in beta-amyloidosis and the associated neurotoxicity. The implications of these results for the biological function and role of Abeta with oxidative stress in AD are discussed.
引用
收藏
页码:40173 / 40176
页数:4
相关论文
共 48 条
[1]   Protein oxidation in the brain in Alzheimer's disease [J].
Aksenov, MY ;
Aksenova, MV ;
Butterfield, DA ;
Geddes, JW ;
Markesbery, WR .
NEUROSCIENCE, 2001, 103 (02) :373-383
[2]  
Aliev G, 2002, BRAIN PATHOL, V12, P21
[3]   SOLUTION CONFORMATIONS AND AGGREGATIONAL PROPERTIES OF SYNTHETIC AMYLOID BETA-PEPTIDES OF ALZHEIMERS-DISEASE - ANALYSIS OF CIRCULAR-DICHROISM SPECTRA [J].
BARROW, CJ ;
YASUDA, A ;
KENNY, PTM ;
ZAGORSKI, MG .
JOURNAL OF MOLECULAR BIOLOGY, 1992, 225 (04) :1075-1093
[4]   Evidence of oxidative damage in Alzheimer's disease brain:: central role for amyloid β-peptide [J].
Butterfield, DA ;
Drake, J ;
Pocernich, C ;
Castegna, A .
TRENDS IN MOLECULAR MEDICINE, 2001, 7 (12) :548-554
[5]   Linkage of plasma Aβ42 to a quantitative locus on chromosome 10 in late-onset Alzheimer's disease pedigrees [J].
Ertekin-Taner, N ;
Graff-Radford, N ;
Younkin, LH ;
Eckman, C ;
Baker, M ;
Adamson, J ;
Ronald, J ;
Blangero, J ;
Hutton, M ;
Younkin, SG .
SCIENCE, 2000, 290 (5500) :2303-+
[6]   An improved method of preparing the amyloid β-protein for fibrillogenesis and neurotoxicity experiments [J].
Fezoui, Y ;
Hartley, DM ;
Harper, JD ;
Khurana, R ;
Walsh, DM ;
Condron, MM ;
Selkoe, DJ ;
Lansbury, PT ;
Fink, AL ;
Teplow, DB .
AMYLOID-JOURNAL OF PROTEIN FOLDING DISORDERS, 2000, 7 (03) :166-178
[7]   Decrease in peptide methionine sulfoxide reductase in Alzheimer's disease brain [J].
Gabbita, SP ;
Aksenov, MY ;
Lovell, MA ;
Markesbery, WR .
JOURNAL OF NEUROCHEMISTRY, 1999, 73 (04) :1660-1666
[8]   Assembly of Aβ amyloid protofibrils:: An in vitro model for a possible early event in Alzheimer's disease [J].
Harper, JD ;
Wong, SS ;
Lieber, CM ;
Lansbury, PT .
BIOCHEMISTRY, 1999, 38 (28) :8972-8980
[9]   Protofibrillar intermediates of amyloid β-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons [J].
Hartley, DM ;
Walsh, DM ;
Ye, CPP ;
Diehl, T ;
Vasquez, S ;
Vassilev, PM ;
Teplow, DB ;
Selkoe, DJ .
JOURNAL OF NEUROSCIENCE, 1999, 19 (20) :8876-8884
[10]   Oxidation of aβ and plaque biogenesis in Alzheimer's disease and Down syndrome [J].
Head, E ;
Garzon-Rodriguez, W ;
Johnson, JK ;
Lott, IT ;
Cotman, CW ;
Glabe, C .
NEUROBIOLOGY OF DISEASE, 2001, 8 (05) :792-806