Structural basis for calcium-induced inhibition of rhodopsin kinase by recoverin

被引:81
作者
Ames, James B. [1 ]
Levay, Konstantin
Wingard, Jennifer N.
Lusin, Jacqueline D.
Slepak, Vladlen Z.
机构
[1] Univ Maryland, Maryland Biotechnol Inst, Ctr Adv Res Biotechnol, Rockville, MD 20850 USA
[2] Univ Miami, Dept Mol & Cellular Pharmacol, Miami, FL 33136 USA
[3] Univ Miami, Program Neurosci, Miami, FL 33136 USA
关键词
D O I
10.1074/jbc.M606913200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recoverin, a member of the neuronal calcium sensor branch of the EF-hand superfamily, serves as a calcium sensor that regulates rhodopsin kinase (RK) activity in retinal rod cells. We report here the NMR structure of Ca2+-bound recoverin bound to a functional N-terminal fragment of rhodopsin kinase (residues 1-25, called RK25). The overall main-chain structure of recoverin in the complex is similar to structures of Ca2+-bound recoverin in the absence of target (< 1.8 angstrom root-mean-square deviation). The first eight residues of recoverin at the N terminus are solvent-exposed, enabling the N-terminal myristoyl group to interact with target membranes, and Ca2+ is bound at the second and third EF-hands of the protein. RK25 in the complex forms an amphipathic helix (residues 4-16). The hydrophobic face of the RK25 helix (Val-9, Val-10, Ala-11, Ala-14, and Phe-15) interacts with an exposed hydrophobic groove on the surface of recoverin lined by side-chain atoms of Trp-31, Phe-35, Phe-49, Ile-52, Tyr-53, Phe-56, Phe-57, Tyr-86, and Leu-90. Residues of recoverin that contact RK25 are highly conserved, suggesting a similar target binding site structure in all neuronal calcium sensor proteins. Site-specific mutagenesis and deletion analysis confirm that the hydrophobic residues at the interface are necessary and sufficient for binding. The recoverin-RK25 complex exhibits Ca2+-induced binding to rhodopsin immobilized on concanavalin-A resin. We propose that Ca2+-bound recoverin is bound between rhodopsin and RK in a ternary complex on rod outer segment disk membranes, thereby blocking RK interaction with rhodopsin at high Ca2+.
引用
收藏
页码:37237 / 37245
页数:9
相关论文
共 58 条
[1]   ASSOCIATION OF BIOMOLECULAR SYSTEMS VIA PULSED-FIELD GRADIENT NMR SELF-DIFFUSION MEASUREMENTS [J].
ALTIERI, AS ;
HINTON, DP ;
BYRD, RA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (28) :7566-7567
[2]   SECONDARY STRUCTURE OF MYRISTOYLATED RECOVERIN DETERMINED BY 3-DIMENSIONAL HETERONUCLEAR NMR - IMPLICATIONS FOR THE CALCIUM MYRISTOYL SWITCH [J].
AMES, JB ;
TANAKA, T ;
STRYER, L ;
IKURA, M .
BIOCHEMISTRY, 1994, 33 (35) :10743-10753
[3]   Structure and calcium-binding properties of Frq1, a novel calcium sensor in the yeast Saccharomyces cerevisiae [J].
Ames, JB ;
Hendricks, KB ;
Strahl, T ;
Huttner, IG ;
Hamasaki, N ;
Thorner, J .
BIOCHEMISTRY, 2000, 39 (40) :12149-12161
[4]   Nuclear magnetic resonance evidence for Ca2+-induced extrusion of the myristoyl group of recoverin [J].
Ames, JB ;
Tanaka, T ;
Ikura, M ;
Stryer, L .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (52) :30909-30913
[5]   Structure and calcium-binding studies of a recoverin mutant (E85Q) in an allosteric intermediate state [J].
Ames, JB ;
Hamasaki, N ;
Molchanova, T .
BIOCHEMISTRY, 2002, 41 (18) :5776-5787
[6]   Three-dimensional structure of guanylyl cyclase activating protein-2, a calcium-sensitive modulator of photoreceptor guanylyl cyclases [J].
Ames, JB ;
Dizhoor, AM ;
Ikura, M ;
Palczewski, K ;
Stryer, L .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (27) :19329-19337
[7]   Molecular mechanics of calcium-myristoyl switches [J].
Ames, JB ;
Ishima, R ;
Tanaka, T ;
Gordon, JI ;
Stryer, L ;
Ikura, M .
NATURE, 1997, 389 (6647) :198-202
[8]   STRUCTURE OF CALMODULIN REFINED AT 2.2 A RESOLUTION [J].
BABU, YS ;
BUGG, CE ;
COOK, WJ .
JOURNAL OF MOLECULAR BIOLOGY, 1988, 204 (01) :191-204
[9]   NMR-DERIVED 3-DIMENSIONAL SOLUTION STRUCTURE OF PROTEIN-S COMPLEXED WITH CALCIUM [J].
BAGBY, S ;
HARVEY, TS ;
EAGLE, SG ;
INOUYE, S ;
IKURA, M .
STRUCTURE, 1994, 2 (02) :107-122
[10]   Immunocytochemical localization and crystal structure of human frequenin (neuronal calcium sensor 1) [J].
Bourne, Y ;
Dannenberg, J ;
Pollmann, V ;
Marchot, P ;
Pongs, O .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (15) :11949-11955